
Москва
Горячая линия – Телеком

2014

УДК 004.732.056(075.8)
ББК 32.973.2-018.2я73
 П82

Проскурин В. Г.
П82 Защита в операционных системах. Учебное пособие для вузов. –

М.: Горячая линия – Телеком, 2014. – 192 с.: ил.
ISBN 978-5-9912-0379-1.

Подробно рассмотрены основные средства и методы обеспечения
информационной безопасности в современных операционных систе-
мах: управление доступом, аутентификация, аудит и обнаружение
вторжений. Кроме того, отдельно рассматриваются некоторые специ-
фические вопросы, косвенно связанные с обеспечением безопасности
операционных систем: централизованное управление политиками
безопасности в доменах Windows, особенности обеспечения безопасно-
сти операционных систем мобильных устройств, концепция виртуали-
зации операционных систем и ее влияние на информационную безо-
пасность. Изложение теоретического материала иллюстрируется
практическими примерами. В конце каждой главы приведен перечень
вопросов для самопроверки, в конце пособия – методические рекомен-
дации по его изучению.

Для студентов (слушателей) вузов, обучающихся по специально-
стям 10.05.01 – «Компьютерная безопасность», 10.05.03 – «Инфор-
мационная безопасность автоматизированных систем» и 10.05.04 –
«Информационно-аналитические системы безопасности», по направ-
лению подготовки 10.03.01 – «Информационная безопасность», уро-
вень бакалавр.

ББК 32.973.2-018.2я73

Адрес издательства в Интернет WWW.TECHBOOK.RU

Учебное издание

Проскурин Вадим Геннадьевич

ЗАЩИТА В ОПЕРАЦИОННЫХ СИСТЕМАХ
Учебное пособие

Редактор Ю. Н. Чернышов
Компьютерная верстка Ю. Н. Чернышова

Обложка художника О. В. Карповой

Подписано в печать 25.12.2013. Формат 6088/16. Уч. изд. л. 12. Тираж 500 экз.
ООО «Научно-техническое издательство «Горячая линия – Телеком»

ISBN 978-5-9912-0379-1 © В. Г. Проскурин, 2014
 © Горячая линия – Телеком, 2014

Предисловие

В настоящее время дисциплина «Защита в операционных систе-
мах», предусмотренная федеральным стандартом высшего профес-
сионального образования по специальности 090301 «Компьютер-
ная безопасность» (квалификация специалист), обеспечена учеб-
но-методической литературой в явно недостаточной мере. Единс-
твенное учебное пособие по данной дисциплине [10], покрывающее
примерную учебную программу дисциплины более чем на 20 %, бы-
ло издано в 2000 году и к настоящему времени сильно устарело.

Предлагаемое учебное пособие призвано заполнить данный про-
бел в методическом обеспечении специальности 10.05.01 — «Ком-
пьютерная безопасность», а также смежных с ней специальностей.
Пособие построено на основе 17-летнего опыта преподавания дис-
циплины «Защита в операционных системах» в ИКСИ. Согласно
учебному плану, на изучение дисциплины «Защита в операционных
системах» отводится восьмой семестр, в конце семестра студенты
сдают экзамен. В рамках основного лекционного курса изучают-
ся пять основных тем, каждой из которых соответствует одна гла-
ва пособия. Кроме того, в пособие включены две главы, описыва-
ющие два сравнительно новых перспективных направления в деле
обеспечения безопасности операционных систем. Соответствующие
темы предполагается включить в программу дисциплины «Защи-
та в операционных системах» при следующей плановой переработке
учебно-методического комплекса.

Помимо вышеупомянутой дисциплины, предлагаемое пособие
может использоваться для преподавания следующих дисциплин:
• «Безопасность операционных систем» специальностей 10.05.03 —

«Информационная безопасность автоматизированных систем» и
10.05.04 — «Информационно-аналитические системы безопасно-
сти»;

• «Программно-аппаратные средства защиты обеспечения инфор-
мационной безопасности» для специальности 10.05.02 — «Ин-
формационная безопасность телекоммуникационных систем»;

• «Программно-аппаратные средства защиты информации» для
бакалавров направления подготовки 10.03.01 — «Информаци-
онная безопасность».

1 Понятие защищенной операционной
системы

1.1. Основные определения
Мы будем называть операционную систему защищенной, если

она предусматривает средства защиты от основных угроз конфиден-
циальности, целостности и доступности информации, актуализиро-
ванных с учетом особенностей эксплуатации данного конкретного
экземпляра операционной системы. В практически значимых си-
туациях защищенная операционная система обычно содержит сред-
ства управления доступом пользователей к различным ресурсам,
средства проверки подлинности пользователя, начинающего работу
с операционной системой, а также средства регистрации действий
пользователей, потенциально опасных с точки зрения безопасности.
Кроме того, защищенная операционная система должна содержать
средства противодействия случайному или преднамеренному выво-
ду операционной системы из строя.

Мы будем называть политикой безопасности набор норм, пра-
вил и практических приемов, регламентирующих порядок хранения
и обработки ценной информации. В применении к операционной
системе политика безопасности определяет то, какие пользователи
могут работать с операционной системой, какие пользователи име-
ют доступ к каким объектам операционной системы, какие события
должны регистрироваться в системных журналах и т. д.

Адекватной политикой безопасности мы будем называть такую
политику безопасности, которая обеспечивает достаточный уровень
защищенности операционной системы. Следует особо отметить, что
адекватная политика безопасности не обязательно является той по-
литикой безопасности, при которой достигается максимально воз-
можная защищенность системы.

1.2. Основные подходы к построению
защищенных операционных систем
Существуют два основных подхода к созданию защищенных

операционных систем — фрагментарный и комплексный. При фраг-
ментарном подходе вначале организуется защита от одной угрозы,
затем от другой и т. д. Примером фрагментарного подхода может

Понятие защищенной операционной системы 5

служить ситуация, когда за основу берется незащищенная операци-
онная система, на нее устанавливаются антивирусный пакет, затем
система шифрования, система регистрации действий пользователей
и т. д.

Основной недостаток фрагментарного подхода очевиден — при
применении этого подхода подсистема защиты операционной систе-
мы представляет собой набор разрозненных программных продук-
тов, как правило, произведенных разными производителями. Эти
программные средства работают независимо друг от друга, органи-
зовать их тесное взаимодействие практически невозможно. Кроме
того, отдельные элементы такой подсистемы защиты могут некор-
ректно работать в присутствии друг друга, что приводит к резко-
му снижению общей надежности системы. Поскольку подсистема
защиты, созданная на основе фрагментарного подхода, не является
неотъемлемой компонентой операционной системы, при отключении
отдельных защитных функций в результате несанкционированных
действий пользователя-нарушителя остальные элементы операци-
онной системы продолжают нормально работать, что еще сильнее
снижает надежность защиты.

При комплексном подходе к организации защиты защитные
функции вносятся в операционную систему еще на этапе проектиро-
вания архитектуры операционной системы и являются ее неотъем-
лемой частью. Отдельные элементы подсистемы защиты, созданной
на основе комплексного подхода, тесно взаимодействуют друг с дру-
гом при решении различных задач, связанных с организацией защи-
ты информации. Поскольку вся подсистема защиты разрабатывает-
ся и тестируется в совокупности, конфликты между ее отдельными
компонентами практически невозможны. Подсистема защиты, соз-
данная на основе комплексного подхода, может быть устроена так,
что при фатальных сбоях в функционировании ее ключевых элемен-
тов подсистемы защиты она вызывает аварийное завершение работы
операционной системы, что не позволяет нарушителю отключать
защитные функции системы. При использовании фрагментарного
подхода такая организация подсистемы защиты невозможна.

Как правило, подсистему защиты операционной системы, соз-
данную на основе комплексного подхода, проектируют так, что отде-
льные ее элементы являются заменяемыми и соответствующие прог-
раммные модули могут быть заменены другими модулями, реализу-
ющими предусмотренный и должным образом документированный
интерфейс взаимодействия соответствующего программного модуля
с другими элементами подсистемы защиты.

6 Г л а в а 1

1.3. Административные меры защиты
Организация эффективной и надежной защиты операционной

системы невозможна с помощью одних только программно- аппа-
ратных средств. Эти средства обязательно должны дополняться
административными мерами защиты. Без постоянной квалифици-
рованной поддержки со стороны администратора даже самая надеж-
ная программно-аппаратная защита оборачивается фикцией.

К основным административным мерам защиты относятся сле-
дующие:
• постоянный контроль корректности функционирования опера-

ционной системы и, в особенности, ее подсистемы защиты. При
этом могут и должны использоваться средства аудита, встроен-
ные в операционную систему, и, при необходимости, дополни-
тельные средства аудита;

• организация и поддержание адекватной политики безопасности.
Политика безопасности должна постоянно корректироваться,
оперативно реагируя на изменения в конфигурации операцион-
ной системы, установку и удаление и изменение конфигурации
прикладных программных продуктов и расширений операци-
онной системы, попытки злоумышленников преодолеть защиту
операционной системы и т. д.;

• инструктирование пользователей операционной системы о не-
обходимости соблюдения мер безопасности при работе с опера-
ционной системой, контроль над соблюдением пользователями
этих мер;

• регулярное создание и обновление резервных копий программ
и данных операционной системы;

• постоянный контроль изменений в конфигурационных данных
и политике безопасности операционной системы. Информацию
об этих изменениях часто дублируют на неэлектронные носи-
тели информации, чтобы нарушителю, преодолевшему защиту
операционной системы, было труднее замаскировать свои не-
санкционированные действия.
В конкретных конфигурациях операционных систем могут пот-

ребоваться и другие административные меры защиты информации.

1.4. Адекватная политика безопасности
Задача выбора и поддержания адекватной политики безопасно-

сти является важнейшей и одной из сложнейших задач, стоящих пе-
ред администратором операционной системы. Если принятая в опе-
рационной системе политика безопасности неадекватна, это может

Понятие защищенной операционной системы 7

приводить к фактам несанкционированного доступа пользователя-
нарушителя к ресурсам защищаемой системы, а также к снижению
надежности ее функционирования.

Не всякая адекватная политика безопасности применима на
практике. В общем случае верно следующее утверждение: чем луч-
ше операционная система защищена, тем труднее с ней работать
пользователям и администраторам. Это обусловлено следующими
факторами.

1. Система защиты, не обладающая интеллектом, не всегда
способна определить, является ли некоторое действие пользователя
злонамеренным. Поэтому система защиты либо не пресекает неко-
торые виды несанкционированного доступа, либо запрещает некото-
рые вполне легальные действия пользователей. Чем выше защищен-
ность системы, тем шире класс тех легальных действий пользовате-
лей, которые рассматриваются подсистемой защиты как несанкцио-
нированные. Если, например, некоторому пользователю запрещено
создавать файлы на жестком диске компьютера, то этот пользо-
ватель не сможет запустить ни одну программу, для нормального
функционирования которой требуется создавать временные файлы.
С точки зрения рассматриваемой политики безопасности создание
временного файла является несанкционированным действием и в
том, что оно пресекается, нет ошибки. Просто в данной политике
безопасности класс несанкционированных действий настолько ши-
рок, что это препятствует нормальной работе пользователей с опе-
рационной системой.

2. Любая система, в которой предусмотрены функции защи-
ты информации, требует от администраторов определенных усилий,
направленных на поддержание адекватной политики безопасности.
Чем больше в операционной системе защитных функций, тем боль-
ше времени и средств нужно тратить на поддержание защиты.

3. Подсистема защиты операционной системы, как и любой дру-
гой программный пакет, потребляет аппаратные ресурсы компьюте-
ра. Чем сложнее устроены защитные функции операционной сис-
темы, тем больше процессорного времени, оперативной памяти и
других аппаратных ресурсов затрачивается на поддержание функ-
ционирования подсистемы защиты и тем меньше ресурсов остается
на долю прикладных программ. В отдельных случаях подсистема
защиты операционной системы может потреблять более половины
аппаратных ресурсов компьютера.

4. Поддержание слишком жесткой политики безопасности мо-
жет негативно сказаться на надежности функционирования опера-

8 Г л а в а 1

ционной системы. Если, например, в Windows запретить псевдопо-
льзователю SYSTEM, от имени которого выполняются системные
процессы, доступ к исполняемым файлам системных процессов, опе-
рационная система не сможет загрузиться. В данном случае чрез-
мерно жесткая политика безопасности приводит к моментальному
краху операционной системы, в других случаях подобная полити-
ка безопасности может приводить к трудновыявляемым ошибкам
и сбоям в процессе функционирования операционной системы, что
еще более опасно.

Таким образом, при определении адекватной политики безопас-
ности не следует пытаться достигнуть максимально возможного
уровня защищенности операционной системы. Оптимальная адек-
ватная политика безопасности — такая политика безопасности, кото-
рая не только не позволяет нарушителям выполнять несанкциони-
рованные действия, но и не приводит к вышеописанным негативным
последствиям.

Не существует единой адекватной политики безопасности на все
случаи жизни. То, какая политика безопасности будет адекватной,
определяется не только архитектурой операционной системы, но и ее
конфигурацией, ассортиментом установленного программного обес-
печения и т. д. Политика безопасности, адекватная для некоторой
операционной системы, скорее всего, будет неадекватна для другого
экземпляра той же операционной системы. Большинство современ-
ных операционных систем достаточно универсальны и могут приме-
няться для решения самых разных задач. Одна и та же операцион-
ная система может использоваться для обеспечения функционирова-
ния автоматизированной банковской системы, веб-сервера, системы
электронного документооборота. Очевидно, что угрозы безопасно-
сти для всех трех указанных применений будут различны и адек-
ватная политика безопасности в каждом из трех случаев будет своя.

Формирование и поддержание адекватной политики безопасно-
сти операционной системы в общем случае можно разделить на сле-
дующие этапы.

1. Анализ угроз. Администратор операционной системы рас-
сматривает возможные угрозы безопасности данного экземпляра
операционной системы. Среди возможных угроз выделяются на-
иболее опасные, защите от которых нужно уделять максимум сил
и средств.

2. Формирование требований к политике безопасности.
На этом этапе администратор определяет, какие средства и методы
будут применяться для защиты от тех или иных угроз. Например,

Понятие защищенной операционной системы 9

защиту от несанкционированного доступа к некоторому объекту опе-
рационной системы можно решать либо средствами разграничения
доступа, либо криптографическими средствами, либо используя не-
которую комбинацию этих средств, либо используя какие-то иные
средства. На данном этапе администратор должен сделать подоб-
ный выбор для каждой угрозы безопасности операционной системы,
выбирая оптимальные средства защиты от каждой угрозы. Однов-
ременно администратор анализирует возможные побочные эффек-
ты различных вариантов политики безопасности, оценивая, в какой
мере в каждом варианте политики безопасности будут проявлять-
ся побочные негативные факторы. Как правило, администратору
приходится идти на компромисс, смиряясь либо с недостаточной за-
щищенностью операционной системы от отдельных угроз, либо с
определенными трудностями пользователей при работе с системой.
Результатом данного этапа является набор требований наподобие:
«В операционной системе должно быть предусмотрено дискрецион-
ное разграничение доступа с минимизацией полномочий пользовате-
лей и частичной реализацией правил изолированной программной
среды».

3. Формальное определение политики безопасности. Дан-
ный этап заключается в том, что администратор четко определяет,
как конкретно должны выполняться требования, сформулирован-
ные на предыдущем этапе. Администратор решает, можно ли доби-
ться выполнения этих требований только встроенными средствами
операционной системы или необходима установка дополнительных
пакетов защиты. В последнем случае производится выбор необходи-
мого программного обеспечения. На данном этапе формулируются
необходимые требования к конфигурации операционной системы, а
также требования к конфигурации дополнительных пакетов защи-
ты, если установка таких пакетов необходима. Кроме того, на дан-
ном этапе администратор должен предусмотреть порядок внесения
необходимых изменений в политику безопасности в чрезвычайных
ситуациях, например, при обнаружении факта несанкционированно-
го входа в систему пользователя-нарушителя. Результатом данного
этапа является развернутый перечень настроек конфигурации опе-
рационной системы и дополнительных пакетов защиты с указанием
того, в каких ситуациях какие настройки должны быть выставлены.

4. Претворение в жизнь политики безопасности. К на-
чалу этого этапа у администратора операционной системы имеется
четкое представление о том, какой должна быть адекватная поли-
тика безопасности. Задачей этапа является приведение конфигу-

10 Г л а в а 1

рации операционной системы и дополнительных пакетов защиты в
соответствие с политикой безопасности, формально определенной
на предыдущем этапе.

5. Поддержание и коррекция политики безопасности. На
данном этапе операционная система функционирует в соответствии
с политикой безопасности, определенной на третьем этапе. Зада-
чей администратора является контроль над соблюдением политики
безопасности и внесение в нее необходимых изменений по мере появ-
ления изменений в функционировании операционной системы. На-
пример, если в операционной системе устанавливается новый прог-
раммный продукт, может потребоваться коррекция политика без-
опасности таким образом, чтобы этот программный продукт мог
нормально функционировать.

1.5. Стандарты безопасности операционных
систем
Анализ угроз, с которого начинается формирование политики

безопасности, является весьма трудоемкой и трудноформализуемой
процедурой. Как правило, угрозы, от которых предполагается защи-
щать компьютерную систему или сеть, очень разнородны, сравнива-
ть их между собой и выделять среди них наиболее опасные обычно
крайне затруднительно. Иногда эту проблему пытаются решать пу-
тем количественного выражения элементарных рисков в некоторых
условных единицах с использованием формул наподобие:

Риск = (стоимость ресурса * вероятность угрозы) / величина
уязвимости

Практическая реализация данного подхода в конкретных опе-
рационных системах сталкивается с рядом трудностей. Наиболее
серьезная проблема количественного анализа рисков заключается
в том, что для исходных числовых данных, используемых в коли-
чественном анализе рисков, часто затруднительно обосновать пог-
решность присвоения тем или иным качественным характеристикам
конкретных числовых значений. Например, погрешность оценки ве-
роятности угрозы может быть корректно вычислена только для тех
угроз, которые реализуются регулярно. Если же попытки реали-
зации некоторой угрозы в исследуемых операционных системах ни
разу не регистрировались, вероятность данной угрозы, как правило,
можно оценить лишь с точностью до порядка. Соответственно, риск
данной угрозы тоже может быть вычислен лишь с точностью до по-
рядка. Это может поставить под сомнение обоснованность оконча-
тельных выводов, сделанных в результате проведенного анализа.

Понятие защищенной операционной системы 11

К сожалению, часто наблюдаются ситуации, когда эксперты,
выполняющие анализ рисков той или иной операционной системы,
совсем не уделяют внимания оценкам погрешностей используемых
количественных показателей, в результате чего анализ рисков вы-
рождается в «жонглирование цифрами», позволяющее получить лю-
бой желаемый результат, подобрав исходные данные соответствую-
щим образом.

Альтернативный подход к управлению безопасности основан на
том, чтобы привести политику безопасности защищаемой системы в
соответствие с тем или иным набором стандартов безопасности или
иных нормативных документов. Основным преимуществом такого
подхода является то, что он позволяет существенно сократить зат-
раты на разработку политики безопасности, сведя к минимуму ана-
лиз рисков для защищаемой системы. Фактически, анализ рисков в
данном случае сводится к обоснованию выбора стандартов безопас-
ности, используемых в качестве основы для планирования политики
безопасности операционной системы.

Если защищаемая операционная система имеет типовую конфи-
гурацию и хорошо описывается существующими стандартами без-
опасности, применение данного подхода к управлению безопаснос-
тью является вполне оправданным. С другой стороны, известны
случаи бездумного применения к управлению безопасностью конк-
ретных систем заведомо неподходящих стандартов безопасности.

В последнее время заметной становится тенденция к сближению
двух рассмотренных подходов. Стандарты информационной без-
опасности становятся все более подробными и детализированными, с
каждым годом все больше практически значимых ситуаций оказыва-
ются описанными в тех или иных стандартах. Большое влияние на
роль и место стандартов безопасности в процессе управления безо-
пасностью конкретных компьютерных систем оказал состоявшийся
в последнее десятилетие переход от линейных шкал классов защи-
щенности к более гибкой системе профилей защиты. Если раньше
стандарты информационной безопасности позволяли удовлетвори-
тельно описать требования к безопасности лишь для наиболее ти-
повых конфигураций операционных систем, то теперь профиль за-
щиты может быть построен для практически любой конфигурации
операционной системы, исключая лишь самые экзотические. При
этом для конкретной операционной системы выбор и обоснование
выбора профиля защиты выполняется путем анализа рисков, соот-
ветствующих тем или иным профилям защиты.

12 Г л а в а 1

В 2002–2003 годах Гостехкомиссией России на основе междуна-
родного стандарта ISO 15408 был разработан комплект профилей
защиты [2], специально предназначенных для описания требований
к безопасности операционных систем. В качестве примера кратко
рассмотрим один из этих профилей защиты, а именно «Операцион-
ные системы. Базовый профиль защиты» [1].

В данном профиле защиты перечислены основные функцио-
нальные требования, предъявляемые к безопасности операционных
систем, сгруппированные следующим образом.

Аудит безопасности:
• автоматическая генерация средствами аудита предупреждений

для уполномоченного администратора при обнаружении воз-
можного нарушения безопасности;

• возможность генерации записей аудита для определенных клас-
сов событий (в профиле защиты приведены 44 примера таких
классов событий);

• возможность однозначного ассоциирования каждого события,
потенциально подвергаемого аудиту, с идентификатором поль-
зователя, послужившего инициатором данного события;

• возможность просмотра уполномоченными администраторами
всех накопленных данных аудита с использованием специаль-
ного средства доступа к журналу аудита;

• запрет доступа неуполномоченных пользователей к накоплен-
ным данным аудита;

• возможность выборочного просмотра накопленных данных ау-
дита с использованием определенных критериев поиска и сор-
тировки (приведены четыре примера таких критериев);

• возможность включения событий, потенциально подвергаемых
аудиту, в совокупность событий, подвергающихся аудиту, или
их исключения из этой совокупности по определенным крите-
риям (приведены четыре примера таких критериев);

• защита накопленных данных аудита от несанкционированной
модификации или удаления;

• предотвращение потери накопленных данных аудита при пере-
полнении журнала аудита.
Защита данных пользователя:

• дискреционное управление доступом для заданного множества
субъектов, объектов и операций над ними;

• использование уникальных идентификаторов пользователей и
групп пользователей при описании политики управления дос-
тупом;

Понятие защищенной операционной системы 13

• наличие правил управления доступа, заданных по умолчанию
и применяемых, когда атрибуты безопасности субъекта не соот-
ветствуют атрибутам безопасности объекта;

• особый порядок управления доступом уполномоченных адми-
нистраторов к объектам операционной системы;

• особые дополнительные правила для явного отказа в доступе
при выполнении определенных условий;

• недоступность предыдущего информационного содержания ре-
сурса при перераспределении или освобождении ресурса.
Идентификация и аутентификация:

• ограничение максимально возможного количества неуспешных
попыток аутентификации в одном подключении к операционной
системе;

• поддержка заданного набора атрибутов безопасности пользова-
теля (приведены четыре примера таких атрибутов);

• требования к стойкости механизмов верификации секретов к
подбору аутентификационной информации;

• явное ограничение списка действий, возможных для неиденти-
фицированного или неаутентифицированного пользователя;

• недопустимость открытой обратной связи в ходе аутентифика-
ции (например, выдачи вводимого пароля на экран компьютера
в незамаскированном виде);

• возможность однозначного ассоциирования каждого процесса
операционной системы с атрибутами безопасности пользователя
(приведены пять примеров таких атрибутов).
Управление безопасностью:

• разрешение управления подсистемой безопасности операцион-
ной системы только уполномоченным администраторам;

• разрешение управления дискреционной политикой безопасно-
сти только уполномоченным администраторам, а также владе-
льцам соответствующих объектов;

• наличие явно заданных значений по умолчанию для атрибутов
безопасности вновь создаваемых объектов;

• наличие явно заданных правил управления доступом уполномо-
ченных администраторов к атрибутам учетных данных пользо-
вателей, в том числе и к аутентификационным данным поль-
зователей;

• наличие механизмов, позволяющих уполномоченным админис-
траторам назначать аутентификационным данным пользовате-
лей сроки действия, а также блокировать учетные записи поль-
зователей.

14 Г л а в а 1

Защита функций безопасности:
• возможность самотестирования подсистемы безопасности опе-

рационной системы при запуске, периодически во время работы
или по запросу уполномоченного администратора;

• обеспечение конфиденциальности и целостности внутренних
данных подсистем безопасности операционных систем в процес-
се их сетевого взаимодействия;

• наличие средств восстановления подсистемы безопасности опе-
рационной системы после сбоев и аварий;

• невозможность взаимодействия пользователей и приложений с
операционной системой в обход функций подсистемы безопас-
ности;

• средства изоляции подсистемы безопасности операционной сис-
темы, не допускающие искажения ее кода и данных недоверен-
ными субъектами доступа;

• реализация надежных меток времени, которые не могут быть
искажены недоверенными субъектами доступа;

• согласованное и надежное взаимодействие подсистем защиты
операционных систем при взаимодействии операционных сис-
тем по сети.
Использование ресурсов:

• наличие механизма квотирования оперативной памяти, процес-
сорного времени и, возможно, других аппаратных ресурсов.
Доступ к операционной системе:

• возможность ручного или автоматического (по истечении задан-
ного интервала времени, в течение которого пользователь без-
действует) блокирования сеанса взаимодействия пользователя с
операционной системой, требование повторной аутентификации
пользователя в ходе разблокирования сеанса;

• возможность автоматической выдачи предупреждающего сооб-
щения пользователю, начинающему сеанс работы с операцион-
ной системой;

• возможность получения пользователем информации о своих по-
следних попытках работы с операционной системой, в том числе
и о неудачных попытках.
Доверенный маршрут/канал:

• канал связи удаленного пользователя с операционной системой
должен быть защищен от раскрытия и модификации переда-
ваемых данных, как минимум, до завершения аутентификации
пользователя.

Понятие защищенной операционной системы 15

Рассматриваемый профиль защиты (как и любые другие про-
фили защиты) не следует рассматривать как перечень требований,
которые должны неукоснительно соблюдаться в любой защищен-
ной операционной системе. Для каждой конкретной конфигурации
операционной системы формулируется свой индивидуальный про-
филь защиты, учитывающий индивидуальные особенности той или
иной системы. При этом базовый профиль может использоваться в
качестве шаблона, чтобы администратору безопасности было легче
сформулировать необходимые требования к конфигурации защища-
емой системы.

Вопросы для самопроверки
1. Что называется защищенной операционной системой?
2. Какие подходы к построению защищенных операционных систем вы

знаете?
3. Какие административные меры защиты вы знаете?
4. Какую политика безопасности называют адекватной?
5. Почему неограниченный рост защищенности операционной системы не-

избежно приводит к снижению ее эксплуатационных качеств?
6. К каким негативным последствиям может привести поддержание чрез-

мерно высокого уровня защищенности системы?
7. Каковы основные этапы процесса формирования и поддержания адек-

ватной политики безопасности операционной системы?
8. Когда заканчивается поддержание и коррекция адекватной политики

безопасности?
9. С какими проблемами сталкиваются попытки количественного анализа

рисков для тех или иных операционных систем?
10. Каковы роль и место стандартов безопасности в деле управления безо-

пасностью операционной системы?
11. Какие преимущества дает применение профилей защиты в стандартах

безопасности компьютерных систем?
12. Какие функциональные требования предъявляются к безопасности опе-

рационных систем согласно базовому профилю защиты стандарта ISO/МЭК
15408 в части, касающейся защиты данных пользователя?

13. Какие функциональные требования предъявляются к безопасности опе-
рационных систем согласно базовому профилю защиты стандарта ISO/МЭК
15408 в части, касающейся идентификации и аутентификации?

14. Какие функциональные требования предъявляются к безопасности опе-
рационных систем согласно базовому профилю защиты стандарта ISO/МЭК
15408 в части, касающейся защиты функций безопасности?

15. Какие функциональные требования предъявляются к безопасности опе-
рационных систем согласно базовому профилю защиты стандарта ISO/МЭК
15408 в части, касающейся доступа к операционной системе?

2 Управление доступом

2.1. Основные определения
Объектом доступа (или просто объектом) мы будем называ-

ть любой элемент операционной системы, доступ к которому поль-
зователей и других субъектов доступа может быть произвольно ог-
раничен. Ключевым словом в данном определении является слово
«произвольно». Если правила, ограничивающие доступ субъектов к
некоторому элементу операционной системы, определены жестко и
не допускают изменения с течением времени, этот элемент операци-
онной системы мы не будем считать объектом. Другими словами,
возможность доступа к объектам операционной системы определя-
ется не только архитектурой операционной системы, но и текущей
политикой безопасности.

Методом доступа к объекту называется операция, определен-
ная для некоторого объекта. Например, для файлов могут быть
определены методы доступа «чтение», «запись» и «добавление» (до-
писывание информации в конец файла).

Субъектом доступа (или просто субъектом) мы будем назы-
вать любую сущность, способную инициировать выполнение опера-
ций над объектами (обращаться к объектам по некоторым методам
доступа). Например, пользователи являются субъектами доступа.

Обычно к субъектам доступа относят не только пользователей,
работающих в системе, но и порожденные ими процессы. Данный
подход является оправданным и, более того, единственно верным, во
всех случаях, когда в область рассмотрения включаются програм-
мные закладки, функционирующие автономно и преследующие свои
собственные задачи, не совпадающие с целями пользователя, рабо-
тающего в системе. Однако в данном пособии мы будем (за редки-
ми исключениями) рассматривать только «чистые» операционные
системы, не зараженные вредоносным программным обеспечением.
Программные закладки и их взаимодействие с атакованными опера-
ционными системами подробно рассматриваются в дисциплине «За-
щита программ и данных» [11].

Таким образом, в данном учебном пособии разделе везде, где
явно не оговорено противное, субъектом доступа мы будем считать
не процесс (или поток процесса-сервера), выполняющий некоторую

Управление доступом 17

операцию, а пользователя, от имени которого этот процесс (или по-
ток) выполняется.

Итак, объект доступа — это то, к чему осуществляется доступ,
субъект доступа — это тот, кто осуществляет доступ, и метод дос-
тупа — это то, как осуществляется доступ.

Для объекта доступа может быть определен владелец — субъ-
ект, несущий ответственность за конфиденциальность содержащей-
ся в объекте информации (если эта информация конфиденциальна),
а также за целостность и доступность объекта. Обычно владель-
цем объекта автоматически назначается субъект, создавший данный
объект, в дальнейшем владелец объекта может быть изменен с испо-
льзованием соответствующего метода доступа к объекту. Владелец
объекта не может быть лишен некоторых прав на доступ к этому
объекту, на владельца, как правило, возлагается ответственность
за корректное ограничение прав доступа к данному объекту других
субъектов.

Правом доступа к объекту мы будем называть право на вы-
полнение доступа к объекту по некоторому методу или группе мето-
дов. В последнем случае право доступа дает субъекту возможность
осуществлять доступ к объекту по любому методу из данной груп-
пы. Говорят, что субъект имеет некоторое право на доступ к объекту
(или «субъект имеет право доступа к объекту» или «субъект имеет
право на объект»), если он имеет возможность осуществлять доступ
к объекту по соответствующему методу или группе методов. Напри-
мер, если пользователь имеет возможность читать файл, говорят,
что он имеет право на чтение этого файла.

Понятие метода доступа и понятие права доступа не идентич-
ны. Например, в операционных системах семейства UNIX право на
запись в файл дает возможность субъекту обращаться к файлу как
по методу «запись», так и по методу «добавление», при этом, поско-
льку право доступа «добавление» в UNIX отсутствует, невозможно
разрешить субъекту операцию добавления, одновременно запретив
операцию записи.

Говорят, что субъект имеет некоторую привилегию, если он
имеет возможность выполнять в операционной системе некоторые
действия, не выражаемые или трудновыражаемые в терминах дос-
тупа субъекта к объектам. Например, в операционной системе Win-
dows поддерживаются привилегии перезагружать компьютер и пе-
ренастраивать часы компьютера. Как частный случай, привиле-
гией является возможность применения некоторого права доступа
или группы прав доступа ко без исключения объектам операцион-

18 Г л а в а 2

ной системы, поддерживающим соответствующие методы доступа.
Например, если субъект операционной системы Windows имеет при-
вилегию отладки, он имеет право доступа ко всем объектам типа
«процесс» и «поток» по группе методов, используемых отладчика-
ми при отладке программ (фактически, по всем поддерживаемым
операционной системой методам доступа).

Полномочиями субъекта доступа называется совокупность
всех предоставленных ему прав и привилегий.

Управлением доступом субъектов к объектам называется со-
вокупность правил, определяющая для каждой тройки субъект–
объект–право, разрешена ли реализация данного права данным су-
бъектом в отношении данного объекта. При дискреционном уп-
равлении доступом возможность доступа определяется для каждой
тройки субъект–объект–право априорно, при мандатном управле-
нии доступом ситуация несколько сложнее.

Мы будем называть субъекта доступа суперпользователем, ес-
ли он имеет возможность игнорировать правила управления досту-
пом к объектам.

Правила управления доступом, действующие в защищаемой
компьютерной системе, устанавливаются администраторами систе-
мы при определении текущей политики безопасности. За соблю-
дением этих правил субъектами доступа следит монитор ссылок
или монитор безопасности объектов — часть подсистемы защи-
ты компьютерной системы.

Правила управления доступом должны удовлетворять следую-
щим очевидным требованиям.
• Правила управления доступом, принятые в компьютерной сис-

теме, должны соответствовать аналогичным правилам, приня-
тым в организации, в которой эксплуатируется данная система.
Другими словами, если, согласно правилам организации, доступ
пользователя к некоторой информации считается несанкциони-
рованным, то в операционной системе этот доступ тоже должен
быть ему запрещен. Под несанкционированным доступом здесь
подразумевается не только несанкционированное чтение инфор-
мации, но и несанкционированное изменение, копирование или
уничтожение информации.

• Правила управления доступа должны не допускать (или, по
крайней мере, затруднять) разрушающие воздействия субъек-
тов доступа, не обладающих соответствующими полномочиями,
на операционную систему, выражающиеся в несанкционирован-
ном изменении, удалении или другом воздействии на объекты,

Управление доступом 19

критически важные для обеспечения нормального функциони-
рования системы.

• Любой объект системы должен иметь владельца. Присутствие
в системе ничейных объектов — объектов, не имеющих владе-
льца, должно быть недопустимо.

• Присутствие в системе недоступных объектов — объектов, к
которым не может обратиться ни один субъект доступа ни по
одному методу доступа, должно быть недопустимо. Недоступ-
ные объекты фактически бесполезно растрачивают аппаратные
ресурсы компьютера.

• Утечка конфиденциальной информации из защищаемой систе-
мы должна быть недопустима. Поскольку реализовать выпол-
нение данного требования программно-аппаратными средства-
ми весьма сложно, оно предъявляется лишь в редких случаях.
Как правило, предотвращение утечки конфиденциальной ин-
формации из защищаемой системы обеспечивается одними то-
лько организационными мерами.

2.2. Типовые модели управления доступом
2.2.1. Дискреционное управление доступом

Система правил дискреционного, или избирательного управ-
ления доступом (discretionary access control) формулируется сле-
дующим образом:

1. Для любого объекта системы существует владелец.
2. Владелец объекта может произвольно ограничивать доступ

других субъектов к данному объекту.
3. Для каждой тройки субъект–объект–право возможность дос-

тупа определена однозначно.
4. Существует хотя бы один привилегированный пользователь

(администратор), имеющий возможность обратиться к любому объ-
екту по любому методу доступа. Это не означает, что этот поль-
зователь может игнорировать разграничение доступа к объектам и
поэтому является суперпользователем. Не всегда для реализации
возможности доступа к объекту операционной системы администра-
тору достаточно просто обратиться к объекту. Например, в Windows
администратор для обращения к чужому (принадлежащему друго-
му субъекту) объекту должен вначале объявить себя владельцем
этого объекта, использовав привилегию администратора объявлять
себя владельцем любого объекта, затем дать себе необходимые пра-
ва, и только после этого администратор может обратиться к объекту.

20 Г л а в а 2

При создании объекта его владельцем назначается субъект, соз-
давший данный объект. В дальнейшем субъект, обладающий не-
обходимыми полномочиями, может назначить объекту нового вла-
дельца.

Для определения прав доступа субъектов к объектам при изби-
рательном разграничении доступа используется матрица доступа.
Строки этой матрицы представляют собой объекты, столбцы — су-
бъекты (или наоборот). В каждой ячейке матрицы доступа хранится
совокупность прав доступа, предоставленных данному субъекту на
данный объект.

Поскольку матрица доступа обычно очень велика, она никогда
не хранится в системе в явном виде. Для сокращения объема матри-
цы доступа используется объединение субъектов доступа в группы.
Права, предоставленные группе субъектов для доступа к некоторо-
му объекту, тем самым автоматически предоставляются каждому
субъекту группы.

Вместе с каждым объектом доступа хранятся его атрибуты
защиты, описывающие, кто является владельцем объекта и каковы
права доступа к данному объекту различных субъектов. Атрибуты
защиты фактически представляют собой совокупность идентифика-
тора владельца объекта и строки матрицы доступа в кодированном
виде.

На практике используются два способа кодирования строки мат-
рицы доступа в атрибутах защиты объекта:
• вектор доступа (UNIX) — вектор фиксированной длины, раз-

битый на несколько подвекторов. Каждый подвектор описыва-
ет права доступа к данному объекту некоторого субъекта. С
помощью вектора доступа можно описать права доступа к объ-
екту только фиксированного числа субъектов, что накладывает
существенные ограничения на систему разграничения доступа;

• список доступа (Windows, VAX/VMS) — список переменной
длины, элементами которого являются структуры, содержащие:

• идентификатор субъекта;
• права, предоставленные данному субъекту на данный объект;
• различные флаги и атрибуты.

Фактически вектор доступа представляет собой список доступа
фиксированной длины и является частным случаем списка доступа.

Кодирование матрицы доступа в виде совокупности списков дос-
тупа позволяет реализовать более мощный и гибкий механизм уп-
равления доступом. С другой стороны, данный механизм требует го-
раздо больше оперативной и дисковой памяти для хранения атрибу-

Управление доступом 21

тов защиты объектов, усложняет техническую реализацию правил
управления доступом и создает проблему, связанную с тем, что зна-
чения элементов списка доступа могут противоречить друг другу.
Предположим, один элемент списка доступа разрешает некоторому
пользователю доступ к объекту, а другой элемент того же списка
запрещает доступ к объекту группе, в которую входит этот поль-
зователь. При использовании списков доступа правила управления
доступом должны включать в себя правила разрешения подобных
противоречий.

При создании нового объекта владелец объекта должен опре-
делить права доступа различных субъектов к этому объекту. Если
владелец объекта этого не сделал, новому объекту либо назначаются
атрибуты защиты по умолчанию, либо новый объект наследует ат-
рибуты защиты от объекта-контейнера, в котором создается объект.

Дискреционное управление доступом является наиболее расп-
ространенным механизмом управления доступом. Это обусловле-
но сравнительной простотой реализации данной модели и сравни-
тельной необременительностью правил дискреционного управления
доступом для пользователей. Вместе с тем, общая защищенность
компьютерной системы, подсистема защиты которой реализует то-
лько лишь дискреционное управление доступом, во многих случаях
недостаточна.

2.2.2. Изолированная программная среда

Изолированная, или замкнутая программная среда предс-
тавляет собой расширение модели дискреционного управления дос-
тупом. Здесь правила управления доступом формулируются следу-
ющим образом:

1. Для любого объекта системы существует владелец.
2. Владелец объекта может произвольно ограничивать доступ

других субъектов к данному объекту.
3. Для каждой четверки субъект-объект-право-процесс возмож-

ность доступа определена однозначно.
4. Существует хотя бы один привилегированный пользователь

(администратор), имеющий возможность обратиться к любому объ-
екту по любому методу.

5. Для каждого субъекта определен список процессов, которые
данный субъект может порождать.

При использовании изолированной программной среды права
субъекта на доступ к объекту определяются не только правами и

22 Г л а в а 2

привилегиями субъекта, но и процессом, посредством которого су-
бъект обращается к объекту. Можно, например, разрешить обраща-
ться к файлам с расширением .DOC только программе Microsoft
Word.

Изолированная программная среда существенно повышает за-
щищенность системы от программных закладок. В то же время
изолированная программная среда создает определенные сложнос-
ти в администрировании защищаемой системы. Например, при ус-
тановке нового программного продукта администратор должен мо-
дифицировать списки разрешенных программ для пользователей,
которые должны иметь возможность работать с этим программным
продуктом. Поэтому использование в изолированной программной
среде прикладного программного обеспечения, разработанного без
учета особенностей данной модели управления доступом, затрудни-
тельно.

2.2.3. Мандатное управление доступом

Данная модель управления доступом в основном предназначена
для предотвращения утечки конфиденциальной информации из за-
щищаемой системы. Основная идея мандатного управления досту-
пом заключается в том, что объектам системы присваиваются ман-
датные метки, формально описывающие секретность информа-
ции, содержащейся в данном объекте в данный момент. При каждой
передаче информации от объекта к объекту вместе с информацией
передается мандатная метка. Если, например, пользователь попы-
тается скопировать информацию из файла с мандатной меткой «сек-
ретно» в файл с мандатной меткой «несекретно», мандатная мет-
ка файла-приемника будет изменена на «секретно» либо операция
копирования будет запрещена. На практике мандатные метки ча-
ще всего образуют единую линейную шкалу возрастающих грифов
секретности, например: «Несекретно», «Для служебного пользова-
ния», «Секретно», «Совершенно секретно». Иногда данную шкалу
дополняют так называемыми неиерархическими категориями ин-
формации, например: «Проект атомной бомбы», «План порабоще-
ния мира». При передаче информации, которая отнесена к опреде-
ленной неиерархической категории (т. е. соответствующему объек-
ту присвоена соответствующая мандатная метка) объект-приемник
также должен быть отнесен к данной неиерархической категории
либо операция копирования должна быть запрещена.

Рассмотрим правила управления доступом для наиболее типич-
ного случая реализации мандатного управления доступом, когда

Управление доступом 23

оно применяется совместно с дискреционным, а среди используемых
мандатных меток нет неиерархических категорий.

1. Для любого объекта системы существует владелец.
2. Владелец объекта может произвольно ограничивать доступ

других субъектов к данному объекту.
3. Для каждой четверки субъект–объект–право–процесс воз-

можность доступа определена однозначно в каждый момент време-
ни. При изменении состояния процесса со временем возможность
предоставления доступа также может измениться. Т.е. если в неко-
торый момент времени к некоторому объекту разрешен доступ неко-
торого субъекта посредством некоторого процесса, это не означает,
что в другой момент времени доступ тоже будет разрешен. Вместе с
тем, в каждый момент времени возможность доступа определена од-
нозначно — никаких случайных величин здесь нет. Поскольку пра-
ва процесса на доступ к объекту меняются с течением времени, они
должны проверяться не только при открытии объекта, но и перед
выполнением над объектом таких операций, как чтение и запись.

4. Существует хотя бы один привилегированный пользователь
(администратор), имеющий возможность удалить любой объект.

5. Каждый объект доступа имеет гриф секретности. Чем вы-
ше числовое значение грифа секретности, тем секретнее объект. Ну-
левое значение грифа секретности означает, что объект несекретен.
Если объект несекретен, администратор может обратиться к нему
по любому поддерживаемому методу, как и в предыдущей модели
разграничения доступа.

6. Каждый субъект доступа имеет уровень допуска. Чем вы-
ше числовое значение уровня допуска, тем больший допуск имеет
субъект. Нулевое значение уровня допуска означает, что субъект
не имеет допуска. Обычно ненулевое значение допуска назначает-
ся только субъектам-пользователям и не назначается субъектам, от
имени которых выполняются системные процессы.

7. Если:
• гриф секретности объекта строго выше уровня допуска субъек-

та, обращающегося к нему,
• субъект открывает объект в режиме, допускающем чтение ин-

формации,
то доступ субъекта к объекту должен быть запрещен независимо
от состояния матрицы доступа. Это так называемое правило NRU
(not read up — не читать выше).

8. Каждый процесс операционной системы имеет уровень кон-
фиденциальности, равный максимуму из грифов секретности объ-

24 Г л а в а 2

ектов, открытых процессом на протяжении своего существования.
Уровень конфиденциальности фактически представляет собой гриф
секретности информации, хранящейся в оперативной памяти, дос-
тупной процессу.

9. Если:
• гриф секретности объекта строго ниже уровня конфиденциаль-

ности процесса, обращающегося к нему,
• субъект собирается записывать в объект информацию,

то доступ субъекту к объекту должен быть запрещен независимо от
состояния матрицы доступа. Это правило разграничения доступа
предотвращает утечку секретной информации. Это так называемое
правило NWD (not write down — не записывать ниже).

10. Понизить гриф секретности объекта может только субъект,
который:
• имеет доступ к объекту согласно правилу 7;
• обладает специальной привилегией, позволяющей ему понижа-

ть грифы секретности объектов.
Если линейная шкала грифов секретности дополнена неиерар-

хическими категориями, правила NRU и NWD видоизменяются оче-
видным образом. Иногда в этом случае употребляются вместо NRU
и NWD формулировки NRI (not read in) и NWO (not write out).

При реализации в операционной системе мандатного управле-
ния доступом существенно страдает производительность, поскольку
права доступа к объекту должны проверяться не только при откры-
тии объекта, но и перед каждой операцией записи.

Кроме того, данная модель управления доступом создает се-
рьезные проблемы, связанные с тем, что если уровень конфиденци-
альности процесса строго выше нуля, то вся информация в памяти
процесса фактически является секретной и не может быть записана
в несекретный объект. Если процесс одновременно работает с дву-
мя объектами, только один из которых является секретным, процесс
не может записывать информацию из своей оперативной памяти во
второй объект. Если, например, запустить внутри операционной
системы, поддерживающей мандатное разграничение доступа, тек-
стовый редактор Word и отредактировать секретный документ, то
при завершении работы Word не сможет обновить орфографичес-
кий словарь. Действительно, уровень конфиденциальности процес-
са имеет значение «секретно», гриф секретности орфографического
словаря — несекретно и запись данных должна быть запрещена сог-
ласно правилу NWD.

Управление доступом 25

Данная проблема может быть решена путем применения специ-
ального программного интерфейса (API) для работы с оперативной
памятью. Области памяти, выделяемые процессам, могут быть опи-
саны как объекты доступа, после чего им могут назначаться грифы
секретности. При чтении секретного файла процесс должен считать
содержимое такого файла в секретную область памяти, используя
специальные функции операционной системы, гарантирующие не-
возможность утечки информации. Для работы с секретной облас-
тью памяти процесс также должен использовать специальные функ-
ции. Поскольку утечка информации из секретных областей памяти
в «обычную» память процесса невозможна, считывание процессом
секретной информации в секретные области памяти не отражается
на уровне конфиденциальности процесса. Если же процесс счит-
ывает секретную информацию в область памяти, не описанную как
объект доступа, уровень конфиденциальности процесса повышается.

Из вышеизложенного следует, что пользователи компьютерных
систем, реализующих данную модель управления доступом, вынуж-
дены использовать программное обеспечение, разработанное с уче-
том именно этой модели. В противном случае пользователи будут
испытывать серьезные проблемы в процессе работы с объектами опе-
рационной системы, имеющими ненулевой гриф секретности.

Также вызывает проблемы вопрос о назначении грифов секрет-
ности вновь создаваемым объектам. Если пользователь создает но-
вый объект с помощью процесса, имеющего ненулевой уровень кон-
фиденциальности, пользователь вынужден присвоить новому объ-
екту гриф секретности не ниже уровня конфиденциальности про-
цесса. Во многих ситуациях это неудобно.

Каждая из приведенных моделей разграничения доступа имеет
свои достоинства и недостатки. Приведенная ниже таблица позво-
ляет провести их сравнительный анализ.

Дискреционное управление доступом является наиболее прос-
той и наименее обременительной для пользователей и администра-
торов системой правил управления доступом. Данная модель управ-
ления доступом подходит тем операционным системам, к безопасно-
сти которых не предъявляется особых требований.

Если для организации чрезвычайно важно обеспечение защи-
щенности системы от несанкционированной утечки конфиденциа-
льной информации (например, если данное требование отражено в
нормативных документах, регламентирующих политику безопасно-
сти в компьютерных системах данной организации), без мандатного
управления доступом не обойтись. В остальных случаях применение

26 Г л а в а 2

Таблица

Управление доступом

Модель разграничения доступа избира- изолирован- полно-
тельное ная среда мочное

Защита от утечки информации отсутствует отсутствует имеется
Защищенность от программных
закладок

низкая высокая низкая

Сложность реализации низкая средняя высокая
Сложность администрирования низкая средняя высокая
Затраты ресурсов компьютера низкие низкие высокие
Использование программного
обеспечения, разработанного
для других систем

возможно проблема-
тично

проблема-
тично

этой модели представляется нецелесообразным из-за резкого ухуд-
шения эксплуатационных качеств операционной системы.

Что касается изолированной программной среды, то ее целе-
сообразно использовать в случаях, когда предъявляются повышен-
ные требования к защищенности операционной системы от вредо-
носного программного обеспечения. В последние годы наблюдается
тенденция дополнять подсистемы управления доступом популярных
операционных систем отдельными элементами изолированной прог-
раммной среды. Возможно, в будущем, по мере нарастания угроз
со стороны вредоносного программного обеспечения, бесконтроль-
но циркулирующего в Internet, изолированная программная среда
станет де-факто стандартом для распространенных операционных
систем.

2.3. Управление доступом в Windows
2.3.1. Объекты доступа

В операционных системах семейства Microsoft Windows все объ-
екты операционной системы являются объектами доступа. Другими
словами, доступ субъектов к любому объекту операционной систе-
мы может быть произвольно ограничен. Атрибуты защиты объекта
Windows входят в число обязательных атрибутов, объект, не имею-
щий атрибутов защиты, физически не может существовать. Даже
те объекты, которые не могут иметь атрибуты защиты из-за внут-
ренних особенностей реализации (например, файлы, физически раз-
мещенные на файловой системе FAT, не могут иметь атрибуты за-
щиты, поскольку те не поддерживаются файловой системой), при
открытии получают временный набор атрибутов защиты «объект
общедоступен».

Управление доступом 27

Интересной особенностью Windows по сравнению с другими опе-
рационными системами является то, что поддерживаемый набор ти-
пов объектов доступа не задан жестко в коде операционной систе-
мы, но может расширяться системным программным обеспечением,
в том числе и разработанным третьими фирмами.

При загрузке операционной системы все поддерживаемые ти-
пы объектов регистрируются путем создания в директории дерева
объектов \ObjectTypes специальных объектов типа «тип объекта»,
каждый из которых соответствует одному из поддерживаемых ти-
пов объектов. Любая программа, имеющая право создавать объекты
в директории \ObjectTypes, может регистрировать в операционной
системе нестандартные типы объектов, которые начиная с момен-
та регистрации обрабатываются Windows наравне со стандартными
типами.

В Windows 7 SP1 определено 42 стандартных типа объектов,
большинство из которых используются внутри операционной систе-
мы и недоступны прикладным программам. Как правило, приклад-
ные программы Windows работают только с объектами следующих
типов:
• файловые объекты: файлы, дисковые директории, устройства,

именованные каналы и т. п.;
• ключи реестра;
• секции разделяемой памяти;
• процессы;
• потоки;
• события;
• мьютексы;
• семафоры;
• порты;
• маркеры доступа;
• рабочие столы;
• оконные станции;
• пакетные задания;
• директории дерева объектов;
• символические связи (линки) дерева объектов.

2.3.2. Субъекты доступа
Операционная система Windows поддерживает следующие типы

субъектов доступа:
1. Пользователи, включая псевдопользователей. К псевдополь-

зователям в Windows относятся следующие субъекты доступа:

28 Г л а в а 2

• SYSTEM — операционная система локального компьютера. Дан-
ный псевдопользователь всегда входит в группу Administrators
и всегда имеет все привилегии;

• LOCAL SERVICE — псевдопользователь, от имени которого вы-
полняются локальные (несетевые) сервисы;

• NETWORK SERVICE — псевдопользователь, от имени которого
выполняются сетевые сервисы;

• ANONYMOUS — «бесправный» псевдопользователь, от имени
которого выполняются сетевые запросы, сделанные в рамках
нуль-сессии (null session)∗;

• ⟨имя компьютера⟩$ — псевдопользователи, соответствующие
компьютерам, входящим в домен. Эти псевдопользователи ис-
пользуются при взаимной аутентификации компьютеров в лесу
доменов, кроме того эти псевдопользователи используются для
делегирования полномочий псевдопользователя SYSTEM одно-
го компьютера на другие компьютеры леса доменов.
2. Группы пользователей. В Windows группы пользователей

могут пересекаться, т. е. каждый пользователь Windows может вхо-
дить в потенциально неограниченное количество групп. Среди всех
групп, в которые входит пользователь, выделяется одна первичная
группа, которая используется исключительно для совместимости
со стандартом POSIX, как та самая единственная группа, в которую
должен входить любой пользователь POSIX-совместимых систем. К
политике безопасности операционной системы первичная группа не
имеет никакого отношения.

3. Специальные (временные) группы. В отличие от обычных
групп членство пользователя в таких группах определяется не ад-
министратором, а самой операционной системой в зависимости от
способа взаимодействия пользователя с системелй. К специальным
группам относятся:
• INTERACTIVE — пользователи, работающие с системой лока-

льно (обычно не более одного);
• NETWORK — пользователи, работающих с системой через сеть;
• DIAL UP — пользователи, работающих с системой по модему;

∗ В некоторых источниках ANONYMOUS считается не пользовате-
лем, а специальной группой. Судя по MSDN, где в одних статьях ANONY-
MOUS называют псевдопользователем, а в других — специальной груп-
пой, единого мнения по данному вопросу нет даже в Microsoft. Однако,
поскольку ANONYMOUS не может выступать в роли пользователя, от
имени которого выполняется процесс, данный вопрос имеет чисто терми-
нологическое значение.

Управление доступом 29

• BATCH — пользователи и псевдопользователи, от имени кото-
рых запущены пакетные задания (batch jobs);

• SERVICE — пользователи и псевдопользователи, от имени ко-
торых выполняются сервисы (службы);

• TERMINAL SERVER USER — пользователи, работающие с сис-
темой через терминальную сессию.
4. Относительные субъекты. Эти субъекты определяются

относительно объекта, для которого определяются права доступа.
Существуют следующие относительные субъекты:
• CREATOR OWNER — владелец объекта;
• CREATOR GROUP — первичная группа владельца объекта.

Относительные субъекты используются, если нужно описать
права доступа пользователей к объектам по принципу «что кому
принадлежит, то ему и доступно».

Для идентификации субъектов доступа в Windows использует-
ся особый тип идентификатора, называемый SID (security id). Су-
бъекты доступа SYSTEM, LOCAL SERVICE, NETWORK SERVICE,
ANONYMOUS, Everyone (группа, в которую входят все пользовате-
ли, возможно, за исключением псевдопользователя ANONYMOUS),
INTERACTIVE, NETWORK, DIAL UP, BATCH, SERVICE, TERMI-
NAL SERVER USER, CREATOR OWNER и CREATOR GROUP име-
ют стандартные идентификаторы, общие для всех экземпляров опе-
рационной системы. Идентификаторы остальных субъекты доступа
уникальны в пределах всей вселенной∗.

2.3.3. Методы и права доступа

Операционная система Windows поддерживает до 22 методов
доступа субъектов к объектам каждого типа (за исключением объ-
ектов активного каталога, особенности реализации прав доступа к
ним будут рассмотрены в п. 2.3.6). Шесть методов доступа представ-
ляют собой стандартные методы, поддерживаемые для объектов
всех типов:
• удаление объекта;
• получение атрибутов защиты объекта;
• изменение списка доступа объекта;

∗ За исключением ситуации, когда несколько экземпляров операци-
онной системы на нескольких однотипных компьютерах некорректно вос-
становлены из одной резервной копии. В этом случае имеющаяся неу-
никальность идентификаторов субъектов приводит к множеству разно-
образных ошибок в функционировании «клонированных» операционных
систем.

30 Г л а в а 2

• изменение владельца объекта;
• получение и изменение параметров аудита в отношении объекта;
• ожидание объекта.

Для каждого типа объекта поддерживается до 16 специфичных
методов доступа. Следующая таблица описывает специфичные
методы доступа, определенные для некоторых типов объектов.

Таблица

Объект Методы

Файл чтение
запись
добавление информации в конец
выполнение
получение атрибутов
изменение атрибутов
получение расширенных атрибутов
изменение расширенных атрибутов

Дисковая
директория

просмотр
создание нового файла
создание поддиректории
проход (traverse)
удаление файла или поддиректории
получение атрибутов
изменение атрибутов
получение расширенных атрибутов
изменение расширенных атрибутов

Ключ реестра чтение значений
изменение значений
создание подключа
перечисление подключей
требование оповещения при доступе к ключу другого потока
создание символической связи

Процесс завершение
создание нового потока
изменение атрибутов страниц адресного пространства
чтение адресного пространства
запись в адресное пространство
дублирование хэндлов
получение приоритета
изменение приоритета
получение информации о процессе
изменение квоты

Поток завершение
приостановка/возобновление
получение контекста1

изменение контекста
получение приоритета
изменение приоритета
назначение маркера доступа

Управление доступом 31

Продолжение таблицы

Объект Методы

Диспетчер
сервисов

подключение
получение статуса списка сервисов
перечисление сервисов
создание нового сервиса
блокирование списка сервисов

Сервис запуск
останов
приостановка/возобновление
получение текущего состояния
обновление текущего состояния
перечисление зависимых сервисов
получение конфигурации
изменение конфигурации
метод доступа, специфичный для данного сервиса2

Рабочий стол чтение элементов рабочего стола
изменение элементов рабочего стола
создание окна
создание меню
установка фильтра (hook setting)
запись макрокоманды (journal recording)
воспроизведение макрокоманды (journal playback)
перечисление (используется функцией EnumDesktops)
отображение рабочего стола на экране

Оконная стан-
ция

чтение содержимого экрана
закрытие
получение атрибутов4

изменение атрибутов
обращение к карману (clipboard)
обращение к таблице атомов
создание нового рабочего стола
перечисление рабочих столов
перечисление самой оконной станции (используется функци-
ей EnumWindowStations)

Секция получение информации о текущем состоянии
отображение для чтения
отображение для записи
отображение для выполнения
изменение размера

Маркер досту-
па

чтение
получение информации о подсистеме, создавшей маркер дос-
тупа
включение/выключение групп
включение/выключение привилегий
изменение атрибутов защиты по умолчанию
изменение идентификатора сессии
назначение процессу
назначение потоку
копирование

32 Г л а в а 2

Окончание таблицы

Объект Методы

Событие получение состояния
изменение состояния

Семафор получение состояния
изменение состояния

Мьютекс получение состояния
изменение состояния

1 Контекст потока в Windows — аппаратно-зависимая структура данных, в
которой сохраняются значения регистров приостановленного или прерванного
потока.
2 Все 128 нестандартных операций управления, специфичных для конкретного
сервиса, рассматриваются подсистемой управления доступом как единый ме-
тод доступа.
3 Элементами рабочего стола Windows являются окна, контексты устройств
(DC), шрифты и т. д.
4 Атрибутами оконной станции являются цветовые настройки, используемые
обои и хранитель экрана и т. д.

Следующие методы доступа требуют наличия у субъекта дос-
тупа специальных привилегий:
• создание нового сервиса;
• блокирование списка сервисов;
• запуск сервиса;
• останов сервиса;
• приостановка/возобновление сервиса;
• назначение процессу маркера доступа;
• получение или изменение параметров аудита в отношении объ-

екта.
Каждому специфичному методу доступа, поддерживаемому в

Windows, соответствует право на его осуществление. Эти права дос-
тупа называются специфичными, поскольку они специфичны для
каждого типа объектов. Для каждого типа объектов может поддер-
живаться до шестнадцати специфичных прав доступа.

Каждому стандартному методу доступа, за исключением метода
«получение и изменение параметров аудита в отношении объекта»,
также соответствует право доступа, дающее возможность реализа-
ции соответствующего метода доступа. Такие права доступа назы-
ваются стандартными.

Заметим, что для некоторых объектов стандартные и специ-
фичные права доступа реализованы не вполне корректно. Напри-
мер, при попытке получения атрибутов защиты объекта типа «про-
цесс» проверяется не стандартное право «получение атрибутов за-

Управление доступом 33

щиты», а специфичное право «получение информации о процессе».
В Windows 2000 при попытке изменения списка доступа файла про-
веряется не только стандартное право «изменение списка доступа»,
но и специфичное право «изменение расширенных атрибутов фай-
ла». Видимо, эти странности обусловлены ошибками программис-
тов. В пользу этого предположения говорит то, что странность ре-
ализации изменения атрибутов защиты файлов имеет место лишь в
Windows 2000, но не в более поздних версиях Windows.

Также Windows поддерживает так называемые общие (generic),
или отображаемые (mapped) права доступа. Поддерживаются че-
тыре отображаемых права доступа:
• чтение (GENERIC READ);
• запись (GENERIC WRITE);
• выполнение (GENERIC EXECUTE);
• все действия (GENERIC ALL).

Каждое из отображаемых прав доступа представляет собой не-
которую комбинацию стандартных и специфичных прав доступа.
Другими словами, отображаемое право доступа дает возможность на
осуществление некоторого набора методов доступа к объекту. Отоб-
ражаемые права могут быть предоставлены для доступа к объекту
любого типа, однако конкретное содержание отображаемого права
доступа зависит от типа объекта.

Следует иметь в виду, что порядок отображения отображаемого
права доступа в набор стандартных и специфичных прав не обяза-
тельно совпадает с интуитивным смыслом общего права доступа.
Например, следующие специфичные права:
• подключение к сервисам — для объекта «диспетчер сервисов»;
• реализация специфичных для конкретного сервиса методов дос-

тупа — для объектов типа «сервис»;
почему-то не включены в отображаемое право GENERIC READ.

Но чаще всего порядок отображения отображаемых прав все же
совпадает с интуитивно ожидаемым.

Отображаемые права доступа позволяют пользователю устанав-
ливать права доступа к объекту, ничего не зная о специфике объ-
ектов данного типа. Например, если пользователь желает, чтобы
все пользователи могли читать некоторый файл, он просто предос-
тавляет группе пользователей Everyone отображаемое право на чте-
ние файла. При этом пользователь не обязан отдельно предостав-
лять группе Everyone права на получение различных атрибутов фай-
ла, поскольку все эти права автоматически предоставляются груп-
пе Everyone при отображение отображаемого права доступа «чтение

34 Г л а в а 2

объекта». Пользователь может даже не знать, что чтение информа-
ции, содержащейся в файле и чтение атрибутов файла реализуются
разными методами доступа.

Последним классом прав доступа, поддерживаемых Windows,
являются виртуальные права доступа. Виртуальные права дос-
тупа не могут быть предоставлены субъекту, но могут быть им зап-
рошены. Поддерживаются два виртуальных права доступа:
• MAXIMUM ALLOWED;
• ACCESS SYSTEM SECURITY.

Запрашивая виртуальное право MAXIMUM ALLOWED на дос-
туп к объекту, субъект тем самым требует открытия объекта с мак-
симально доступными ему правами. Это виртуальное право позво-
ляет субъекту открыть объект с максимально доступными правами,
не производя детального анализа того, какие именно права доступ-
ны данному субъекту по отношению к данному объекту. Операцион-
ная система сама проводит такой анализ в процессе проверки прав
доступа субъекта к объекту.

Виртуальное право ACCESS SYSTEM SECURITY — это право
на получение и изменение параметров аудита по данному объекту.
Возможность доступа к объектам по этому методу полностью регу-
лируется соответствующей привилегией субъекта доступа. Субъект,
обладающий этой привилегией, может обращаться по данному мето-
ду доступа к любому объекту операционной системы, а субъект, не
обладающий этой привилегией, не может применять данный метод
доступа ни к одному объекту. Таким образом, субъект, имеющий
доступ к параметрам аудита некоторого объекта, имеет доступ к па-
раметрам аудита любого объекта операционной системы. Разрешить
или запретить доступ конкретного субъекта к конкретному объекту
по методу «доступ к параметрам аудита по объекту» в Windows не-
возможно, и поэтому данное право доступа является виртуальным.

2.3.4. Привилегии субъектов доступа
Каждый пользователь и псевдопользователь Windows обладает

некоторым (возможно, пустым) набором привилегий. Привилегии
представляют собой права на выполнение субъектом действий, каса-
ющихся всей системы в целом, а не отдельных ее объектов. Перечис-
лим основные привилегии, поддерживаемые в современных версиях
Windows:
• завершать работу операционной системы и перезагружать ком-

пьютер с локальной консоли;
• завершать работу операционной системы и перезагружать ком-

пьютер с удаленной консоли;

Управление доступом 35

• устанавливать системное время;
• анализировать производительность одного процесса;
• анализировать производительность всей операционной системы

в целом;
• создавать постоянные объекты в оперативной памяти;
• создавать резервные копии информации, хранящейся на жест-

ких дисках;
• восстанавливать информацию на жестких дисках с резервных

копий;
• назначать процессам и потокам высокие приоритеты;
• повышать квоты процессов;
• изменять системные переменные среды;
• отлаживать программы — позволяет обращаться ко всем объ-

ектам типа «процесс» и «поток» по всем методам доступа, под-
держиваемым для данных объектов;

• загружать и выгружать драйверы и сервисы;
• работать с подсистемой аудита — просматривать и очищать жур-

нал аудита, получать информацию о политике аудита, изменять
политику аудита, осуществлять доступ к параметрам аудита по
любому объекту операционной системы;

• добавлять записи в журнал аудита;
• объявлять себя владельцем любого объекта;
• создавать маркеры доступа;
• назначать процессам маркеры доступа;
• выступать как часть операционной системы;
• получать оповещения от файловых систем;
• извлекать компьютер из стойки (docking station);
• добавлять компьютеры в домен;
• синхронизировать домен;
• создавать объекты, глобальные для всех терминальных сессий

данного сервера;
• делегировать полномочия клиентов на другие компьютеры;
• олицетворять клиентов;
• выполнять задачи по обслуживанию логических дисков (деф-

рагментация и т. п.).
При входе в систему пользователь получает привилегии, пре-

доставленные ему индивидуально, а также привилегии, предостав-
ленные всем группам, в которые входит пользователь. Назначать
привилегии субъектам доступа может только администратор. Если

36 Г л а в а 2

привилегии пользователя изменились за время его работы с систе-
мой, изменения начинают действовать только после того, как поль-
зователь выйдет из системы и снова войдет в нее.

Некоторые из перечисленных привилегий позволяют обладаю-
щим ими субъектам, преодолевать те или иные элементы защиты
операционной системы, например:
• привилегия создавать резервные копии информации позволяет

пользователю игнорировать правила управления доступом при
чтении файлов, дисковых директорий, ключей и значений ре-
естра;

• привилегия восстанавливать информацию с резервных копий
позволяет пользователю игнорировать правила управления дос-
тупом при создании файлов, дисковых директорий, ключей и
значений реестра, а также при записи в файлы и значения ре-
естра;

• привилегия отлаживать программы позволяет пользователю об-
ращаться к любому процессу по любому методу доступа. В час-
тности, программа, запущенная таким пользователем, может
изменить произвольным образом содержимое адресного прост-
ранства любого процесса операционной системы, что предостав-
ляет такому пользователю практически неограниченные полно-
мочия;

• привилегия загружать и выгружать драйверы и сервисы позво-
ляет пользователю выполнять произвольный код от имени и с
правами операционной системы (псевдопользователя SYSTEM).
Пользователь может внедрять в операционную систему прог-
раммные закладки под видом драйверов и сервисов. Учитывая,
что драйверы устройств Windows могут игнорировать большин-
ство защитных функций операционной системы, эта привилегия
дает субъекту, ей обладающему, практически неограниченные
полномочия;

• привилегия переназначать владельца любого объекта позволя-
ет пользователю получать доступ к любому объекту по любому
методу (за исключением доступа к параметрам аудита по дан-
ному объекту);

• привилегия добавлять записи в журнал аудита позволяет поль-
зователю записывать в журнал аудита произвольную информа-
цию, в том числе и информацию, компрометирующую других
пользователей.
Администраторы операционной системы должны подходить к

назначению пользователям привилегий с максимальной ответствен-

Управление доступом 37

ностью. Особое внимание следует уделять вышеперечисленным опас-
ным привилегиям.

Помимо явно определенных привилегий, в Windows существуют
также привилегии, неявно определенные через предопределенные
группы. Например, группа Administrators обладает целым рядом
неявно определенных привилегий, например, привилегией выпол-
нять команду at, привилегией регистрировать любых пользовате-
лей и т. д.

2.3.5. Маркер доступа пользователя

В Windows каждый пользователь (в том числе и каждый псев-
допользователь), работающий в системе, имеет свой маркер досту-
па (access token). Каждый процесс, порожденный пользователем,
получает свою копию маркера доступа пользователя, эта копия яв-
ляется обязательным атрибутом процесса. Процесс, не имеющий
маркера доступа, не может существовать. Также маркеры доступа
могут назначаться отдельным потокам.

Маркер доступа представляет собой объект специального вида,
содержащий следующую информацию (пока мы просто перечислим
элементы маркера доступа, не вдаваясь в подробные пояснения, ко-
торые последуют ниже):
• TokenUser — личный идентификатор пользователя;
• TokenGroups — список групп и специальных групп, в которые

входит пользователь;
• TokenPrivileges — список привилегий, предоставленных пользо-

вателю;
• TokenOrigin — идентификатор сеанса работы пользователя с

операционной системой;
• TokenSessionId — идентификатор терминальной сессии, в рам-

ках которой пользователь работает с операционной системой.
Если пользователь не работает в рамках терминальной сессии,
данный идентификатор равен нулю;

• TokenOwner — идентификатор субъекта доступа, который по
умолчанию назначается владельцем всех объектов, создаваем-
ых пользователем в ходе работы с системой. Обычно совпадает
с личным идентификатором пользователя, в некоторых конфи-
гурациях операционной системы пользователям-администрато-
рам в качестве TokenOwner назначается идентификатор группы
Administrators;

• TokenPrimaryGroup — идентификатор группы, которая по умол-
чанию назначается первичной группой владельца всех объектов

38 Г л а в а 2

операционной системы, создаваемых пользователем в ходе ра-
боты с системой. Всегда совпадает с первичной группой поль-
зователя, которому выдан данный маркер доступа;

• TokenDefaultDacl — список доступа, назначаемый по умолчанию
новым объектам операционной системы, созданным данным по-
льзователем в текущем сеансе работы;

• TokenRestrictedSids — список ограничивающих идентификато-
ров, поддерживается только для ограниченных маркеров дос-
тупа;

• TokenImpersonationLevel — уровень олицетворения, поддержи-
вается для маркеров доступа, назначенных потокам, но не про-
цессам.

• TokenType — тип маркера доступа: первичный маркер доступа
(назначается процессу) или маркер олицетворения (назначается
потоку);

• TokenSource — имя и идентификатор элемента подсистемы ау-
тентификации, выдавшего данный маркер доступа;

• TokenStatistics — дополнительная служебная информация.
Маркер доступа содержит всю информацию о пользователе, не-

обходимую подсистеме управления доступом для принятия решений
о предоставлении пользователю доступа к тем или иным объектам
операционной системы.

Маркер доступа пользователя создается в ходе авторизации по-
льзователя, на одном из последних этапов процедуры входа пользо-
вателя в систему. Создавать маркеры доступа могут только процес-
сы, выполняющиеся от имени субъектов, обладающих соответствую-
щей привилегией. Обычно этой привилегией обладает только псев-
допользователь SYSTEM. Единственным способом создать маркер
доступа является использование системного вызова LsaLogonUser,
получающего в качестве входных параметров идентификационную
и аутентификационную информацию пользователя и возвращающе-
го (в случае успешного выполнения) в выходном параметре хэндл
созданного маркера доступа. Создание маркера доступа «вручную»
невозможно.

Доступ прикладных и системных программ к маркерам доступа
возможен только лишь с использованием соответствующих систем-
ных вызовов, предоставляющих весьма ограниченные возможности
по работе с маркерами доступа. Прямой доступ из пользовательско-
го режима к отдельным элементам маркеров доступа невозможен.
Это сделано специально, во избежание несанкционированного из-
менения полномочий пользователей путем модификации маркеров

Управление доступом 39

доступа вредоносными программами. Лишь программный код, вы-
полняющийся в режиме ядра, может получить прямой доступ к эле-
ментам маркера доступа. Впрочем, программный код, выполняю-
щийся в режиме ядра, обладает ничем не ограниченными полномо-
чиями и может получать прямой и ничем не ограниченный доступ
к любым объектам операционной системы.

Каждому процессу Windows назначается так называемый пер-
вичный маркер доступа (primary access token). Если процесс по-
рожден с помощью системной функции CreateProcess или одной из
более высокоуровневых функций, ее использующих (подавляющее
большинство процессов порождаются именно так), первичный мар-
кер доступа представляет собой точную копию первичного маркера
доступа процесса-родителя, т. е. маркер доступа пользователя, рабо-
тающего в системе. Субъект, обладающий привилегией «назначать
маркеры доступа процессам», может порождать процессы от имени
других пользователей и псевдопользователей.

Отдельным потокам процесса могут назначаться свои маркеры
доступа (так называемые маркеры олицетворения — impersona-
tion access tokens). Механизм олицетворения обычно используется
процессами-серверами. Когда процесс-сервер обслуживает запрос
процесса-клиента, для выполнения запроса внутри процесса-сервера
создается поток, которому назначается маркер доступа пользовате-
ля, инициировавшего запрос, и в дальнейшем данный поток рабо-
тает с правами того пользователя, от имени которого выполняет-
ся процесс-клиент. Если бы олицетворение клиентов в Windows не
поддерживалось, при каждом обращении процесса-клиента к объек-
ту операционной системы сервера процессу-серверу приходилось бы
явно проверять достаточность прав доступа ползователя-клиента к
данному объекту сервера. При этом достаточно пропустить всего
лишь одну проверку прав доступа клиента и в системе появляется
критическая уязвимость. Но если в операционной системе поддер-
живается механизм олицетворения, процесс-сервер может не заботи-
ться о полномочиях клиента, все необходимые проверки делаются
автоматически.

В ранних версий Windows (до версии XP SP1 включительно)
возможность олицетворять клиентов предоставлялась всем поль-
зователям и псевдопользователям операционной системы без вся-
ких ограничений. Это было серьезной потенциальной уязвимос-
тью, легко приводящей к реальным уязвимостям, чаще всего кри-
тическим с точки зрения безопасности. Если низкопривилегирован-
ному пользователю удавалось зарегистрировать свой процесс как

40 Г л а в а 2

сервер некоторого многопользовательского интерфейса и заставить
высокопривилегированного пользователя подключиться к этому сер-
веру, низкопривилегированный пользователь мог легко повысить
свои полномочия, проведя олицетворение высокопривилегирован-
ного пользователя-клиента. Известен целый ряд подобных уязви-
мостей в Windows NT, Windows 2000 и Windows XP, одна из них
(AdminTrap) была обнаружена автором настоящего пособия в 1997
году.

Начиная с Windows XP SP2, олицетворение клиента требует
наличия у пользователя или псевдопользователя, от имени кото-
рого выполняется процесс-сервер, специальной привилегии «оли-
цетворять клиентов». При отсутствии у сервера данной привиле-
гии олицетворение не происходит, хотя соответствующие системные
функции, как правило, не сообщают об ошибке∗. Исключением яв-
ляются ситуации, когда олицетворение клиента заведомо безопасно
(например, когда маркер доступа клиента создан на основе имени
и пароля, явно указанных сервером), в этих случаях олицетворе-
ние происходит даже при отсутствии данной привилегии в маркере
доступа процесса-сервера.

Начиная с Windows 2000, в маркер доступа потока включает-
ся особый атрибут «уровень олицетворения». Он может принимать
следующие значения:
• SecurityAnonymous, анонимный — «пустой» маркер доступа, опе-

рационная система воспринимает его как отсутствие маркера
доступа у потока. Обычно такие маркеры доступа возникают в
результате сетевых ошибок в ходе аутентификации удаленных
клиентов;

• идентификационный — для маркера доступа поддерживаются
все операции, кроме олицетворения. Если необходимо провес-
ти проверку прав доступа с использованием данного маркера
доступа, эта проверка должна быть осуществлена путем явного
вызова системной функции NtAccessCheck или одной из более

∗ Так сделано специально для обеспечения обратной совместимос-
ти с программным обеспечением, разработанным для предшествующих
версий Windows. Дело в том, что ошибка в ходе олицетворения клиента
низкопривилегированным сервером чаще всего никак не сказывается на
дальнейшем функционировании ни сервера, ни клиента. Если бы фун-
кции олицетворения при отсутствии у сервера достаточных полномочий
выдавали сообщения об ошибках, в большинстве случаев это приводило
бы к неоправданным отказам в обслуживании клиентов.

Управление доступом 41

высокоуровневых функций, вызывающих NtAccessCheck внут-
ри себя;

• олицетворение — маркер доступа может быть использован для
олицетворения на локальном компьютере;

• делегирование — маркер доступа может быть использован для
олицетворения в пределах всего леса доменов, к которому при-
надлежит данный компьютер∗. Маркер доступа данного типа
может создаваться только для тех пользователей, учетные запи-
си которых имеют атрибут «обратимое шифрование аутентифи-
кационных данных». При этом политики безопасности компью-
тера, домена и всего леса должны удовлетворять некоторым ус-
ловиям. Большинство экспертов считают, что маркеры доступа
уровня делегирования создают потенциальную угрозу безопас-
ности сети и должны применяться только в тех случаях, когда
без них безусловно нельзя обойтись (например, когда термина-
льный сервер должен использоваться в качестве клиента для
подключения к другому терминальному серверу).
Назначать маркер доступа процессу, а также создавать марке-

ры доступа могут только субъекты, обладающие соответствующими
привилегиями.

Каждая привилегия, содержащаяся в маркере доступа, в каж-
дый момент времени может находиться в одном из двух состояний —
включенном либо выключенном. Если привилегия выключена, су-
бъект, которому принадлежит маркер доступа, не может пользова-
ться данной привилегией до тех пор, пока не включит ее. По умол-
чанию большинство привилегий выключены. После того, как при-
вилегия включена и применена, Microsoft рекомендует выключить
привилегию, как только это станет возможным, однако большинс-
тво разработчиков программного обеспечения не придерживаются
этой рекомендации.

Для включения и выключения привилегий Microsoft рекомен-
дует применять системную функцию AdjustTokenPrivileges из биб-
лиотеки advapi32.dll. Однако эта функция весьма неудобна в при-
менении и большинство программистов предпочитают «хакерский»
способ, основанный на использовании недокументированной функ-
ции RtlAdjustPrivilege из библиотеки ntdll.dll. Эта функция имеет
следующий прототип:

NTSTATUS RtlAdjustPrivilege (ULONG Privilege, BOOL Enable,

∗ Политики безопасности организационных единиц могут ограничи-
вать область делегирования полномочий.

42 Г л а в а 2

BOOL ThreadToken,

PBOOL pOldState);

Параметры функции имеют следующий смысл:
• Privilege — идентификатор привилегии. В Windows каждая

привилегия идентифицируется 64-битным целым числом, в ко-
тором старшие 32 бита всегда равны нулю (но это нигде не доку-
ментировано). В 32-разрядных версиях Windows эта функция
принимает лишь младшие 32 бита идентификатора привилегии;

• Enable — включить (TRUE) или выключить (FALSE) привиле-
гию;

• ThreadToken — операция проводится над маркером доступа по-
тока (TRUE) или процесса (FALSE);

• pOldState — указатель на переменную, в которую будет занесено
предыдущее состояния данной привилегии.
Функция возвращает статус выполнения в формате NT API.
Маркер доступа создается подсистемой аутентификации опера-

ционной системы в процессе авторизации пользователя, при этом
псевдопользователь SYSTEM использует свою привилегию создава-
ть маркеры доступа. После того, как маркер доступа создан, инфор-
мация о группах, в которые входит пользователь, и о привилегиях
пользователя не может быть ни добавлена в маркер доступа, ни уда-
лена из него (за одним исключениям, которое будет описано ниже).

В Windows 2003 маркеры доступа поддерживают новую опера-
цию, отсутствовавшую в предшествующих версиях Windows — необ-
ратимое отключение привилегий. После того, как эта операция вы-
полнена над некоторой привилегией, включение данной привилегии
в данном экземпляре маркера доступа становится невозможно. Эк-
сперты Microsoft рекомендуют программистам, разрабатывающим
программное обеспечение для высокопривилегированных процессов,
применять данную операцию в ходе инициализации процесса ко всем
привилегиям, которые заведомо не будут включаться в текущем се-
ансе работы процесса. Это позволяет заметно снизить опасность экс-
плуатации нарушителей уязвимостей в программном коде процесса
(переполнения буферов и т. п.). Когда в контексте процесса акти-
визируется чужеродный вредоносный код, он может пользоваться
только теми привилегиями, которые содержатся в маркере досту-
па процесса. Теми привилегиями, которые необратимо удалены из
маркера доступа, эксплойт воспользоваться не сможет. Например,
вредоносный код, активизировавшийся в контексте веб-сервера, от-
казавшегося от неиспользуемых привилегий, не сможет пользовать-
ся привилегиями, необходимыми для работы отладчика или консо-

Управление доступом 43

ли администрирования. К сожалению, большинство программистов
пока не принимают данную рекомендацию во внимание.

Начиная с Windows 2000, операционной системой поддержива-
ются так называемые ограниченные (restricted) маркеры доступа,
создаваемые из обычных маркеров доступа с помощью системной
функции CreateRestrictedToken. Ограниченные маркеры доступа
имеют следующие отличия от обычных маркеров доступа:
• Некоторые группы в ограниченном маркере доступа могут быть

помечены флагом «только для запрета» (SE GROUP USE FOR
DENY ONLY). При проверке доступа субъекта к объекту такие
группы учитываются только при анализе тех элементов списка
доступа объекта, которые запрещают те или иные права дос-
тупа к объекту. Если некоторый элемент списка доступа разре-
шает группе с флагом «только для запрета» доступ к объекту,
данный элемент при проверке прав доступа игнорируется.

• Некоторые привилегии, входившие в оригинальный маркер дос-
тупа, могут быть не скопированы в ограниченный маркер дос-
тупа. В Windows XP и более ранних версиях это единствен-
ный способ необратимо удалить привилегию из маркера досту-
па. В Windows 2003 Server, как уже отмечалось выше, для необ-
ратимого удаления привилегий не требуется предварительного
создания ограниченного маркера доступа.

• В ограниченный маркер доступа могут быть добавлены ограни-
чивающие идентификаторы пользователей и групп (restricting
SIDs)∗. При проверке прав доступа пользователя или псевдо-
пользователя, чей маркер доступа содержит ограничивающие
идентификаторы, выполняются две проверки прав доступа: од-
на для основного списка (личный идентификатор пользовате-
ля, а также группы и специальные группы, в которые входит
пользователь) и другая для списка ограничивающих идентифи-
каторов. Доступ субъекта к объекту разрешается только в том
случае, если обе проверки закончились с результатом «доступ
разрешен»∗∗. Фактически список ограничивающих идентифи-

∗ Иногда их ошибочно называют ограниченными. К сожалению, эта
ошибка (restricted вместо restricting) встречается даже в официальной до-
кументации Microsoft.

∗∗ Если пользователь запрашивает виртуальное право MAXIMUM
ALLOWED, ему предоставляются те и только те права, которые предос-
тавлены в результате обеих проверок, т. е. пересечение двух списков прав
доступа.

44 Г л а в а 2

каторов задает верхнюю границу, которую не могут превосхо-
дить полномочия субъекта, обладающего ограниченным марке-
ром доступа. Например, если ограничивающий список субъ-
екта включает в себя единственную группу Everyone, это оз-
начает, что данный субъект может получать доступ только к
общедоступным объектам, при этом к некоторым общедоступ-
ным объектам доступ данного субъекта может быть запрещен
(если проверка основного списка идентификаторов субъекта не
увенчалась успехом).
Ограниченные маркеры доступа представляют собой чрезвы-

чайно мощный инструмент, позволяющий реализовывать принцип
минимизации полномочий пользователей практически в полном объ-
еме. К сожалению, на практике ограниченные маркеры доступа ис-
пользуются редко.

2.3.6. Дескриптор защиты объекта

Атрибуты защиты объекта Windows описываются специальной
структурой данных, называемой дескриптором защиты (security
descriptor). Любой объект Windows может иметь дескриптор защи-
ты. Дескриптор защиты содержит следующую информацию:
• идентификатор владельца объекта;
• идентификатор первичной группы владельца объекта;
• список дискреционного управления доступом (discretionary ac-

cess control list, DACL), полностью описывающий права различ-
ных субъектов на объект;

• системный список управления доступом (system access control
list∗ SACL) — используется для генерации сообщений аудита,
связанных с доступом к объекту;

• флаги.
Если объект не имеет дескриптора защиты, при обращениях

к нему субъектов никакие права доступа не проверяются. В этом
случае любой субъект имеет абсолютные права на данный объект.

Если объект хранится на диске или ином внешнем устройстве,
дескриптор защиты хранится вместе с объектом, при этом формат
хранения объекта должен предоставлять такую возможность. Пос-
кольку файловые системы, отличные от NTFS, не поддерживают
хранение на диске дескрипторов защиты для файлов, только фай-
лы и директории, расположенные на логических дисках с файловой

∗ Иногда аббревиатуру SACL расшифровывают как Security Access
Control List.

Управление доступом 45

системой NTFS, могут иметь дескрипторы защиты. Ключи реестра
могут иметь дескрипторы защиты независимо от файловой системы
диска, на котором размещается реестр.

Флаги дескриптора защиты представляют собой 32-битную мас-
ку, отдельные биты которой имеют следующий смысл:

0 — установлен, если идентификатор владельца объекта был
установлен по умолчанию при создании объекта и с тех пор не ме-
нялся;

1 — установлен, если идентификатор первичной группы владе-
льца объекта ьыл установлен по умолчанию при создании объекта
и с тех пор не менялся;

2 — установлен, если в дескрипторе защиты присутствует DACL.
Если данный флаг сброшен, дескриптор защиты допускает полный
доступ к данному объекту всех субъектов доступа;

3 — установлен, если DACL объекта назначен по умолчанию при
создании объекта на основе маркера доступа субъекта-создателя;

4 — установлен, если в дескрипторе защиты присутствует SACL.
Если данный флаг сброшен, дескриптор защиты не предусматрива-
ет генерации сообщений аудита при доступе субъектов к данному
объекту;

5 — установлен, если SACL объекта назначен по умолчанию при
создании объекта на основе маркера доступа субъекта-создателя;

8 — установлен, если любые изменения в DACL объекта долж-
ны быть автоматически унаследованы существующими дочерними
объектами;

9 — установлен, если любые изменения в SACL объекта долж-
ны быть автоматически унаследованы существующими дочерними
объектами;

10 — установлен, если DACL объекта подвергался процедуре ав-
томатического наследования изменений в DACL объекта-родителя;

11 — установлен, если SACL объекта подвергался процедуре ав-
томатического наследования изменений в SACL объекта-родителя;

12 — установлен, если DACL объекта не должен автоматически
наследовать изменений в DACL объекта-родителя;

13 — установлен, если SACL объекта не должен автоматически
наследовать изменений в SACL объекта-родителя;

15 — установлен, если дескриптор защиты представлен в упа-
кованном формате (для хранения на диске или в другом внешнем
хранилище, но не для чтения или модификации). Большинство опе-
раций над упакованным дескриптором защиты требуют его предва-
рительной распаковки. Распаковка дескриптора защиты (как и упа-

46 Г л а в а 2

ковка) является чисто технической процедурой и никак не влияет
на порядок управления доступом к объекту, к которому относится
дескриптор защиты.

Биты 8 и 9 имеют смысл только для объектов-контейнеров (дис-
ковые и объектовые директории, ключи реестра и т. п.).

Когда субъект доступа открывает объект, субъект должен со-
общить операционной системе права, необходимые ему для рабо-
ты с данным объектом. Эти права кодируются с помощью битовой
маски, каждый бит которой соответствует некоторому праву досту-
па. Например, если пользователь открывает объект типа «файл»,
второй параметр системной функции CreateFile является битовой
маской, описывающей запрашиваемые права доступа к объекту. Ес-
ли субъект открывает файл для чтения и записи, эта маска дос-
тупа должна быть равна FILE READ DATA | FILE WRITE DATA |
FILE APPEND DATA (или GENERIC READ | GENERIC WRITE).

При каждом открытии объекта субъектом операционная систе-
ма получает маркер доступа субъекта и дескриптор защиты объекта
и вызывает функцию ядра SeAccessCheck (обычно не непосредствен-
но, а через несколько промежуточных функций). SeAccessCheck ре-
ализует проверку прав доступа субъекта к объекту по алгоритму,
который будет описан ниже.

Элементы списка дискреционного управления доступом назы-
ваются элементами управления доступом (access control entries,
ACE). Каждый элемент управления доступом разрешает или запре-
щает некоторому субъекту определенные права на доступ к объекту.
В состав элемента управления доступом могут входить следующие
основные поля:
• тип элемента: разрешающий, запрещающий или регистрирую-

щий;
• идентификатор субъекта;
• битовая маска прав доступа;
• флаги;
• GUID1 (необязательное поле);
• GUID2 (необязательное поле).

В DACL объекта могут присутствовать только разрешающие и
запрещающие ACE, разрешающие ACE разрешают указанным су-
бъектам доступ к объекту по указанным правам, запрещающие —
запрещают. В SACL объекта могут присутствовать только регист-
рирующие ACE.

Начиная с Windows NT 4.0, дескрипторы защиты объектов, по-
мимо обычных элементов контроля доступа, могут содержать так

Управление доступом 47

называемые compound ACE. В отличие от других ACE, compound
ACE содержит два идентификатора субъектов, один из которых дол-
жен присутствовать в маркере доступа потока, обращающегося к
объекту, а другой — в маркере доступа процесса, в контексте кото-
рого выполняется данный поток. Другими словами, compound ACE
позволяет описать особые права доступа для любой заданной пары
пользователь-клиент + пользователь-сервер. Этот механизм край-
не неудобен для практического использования и, насколько известно
автору, никогда никем не используется.

Поля GUID1 и GUID2 могут присутствовать только в ACE, от-
носящихся к объектам активного каталога доменов Windows. Объ-
екты активного каталога обычно представляют собой совокупности
подобъектов∗ — небольших записей, содержащих текстовые строки,
числовые значения или короткие бинарные данные. Поскольку под-
объекты, как правило, занимают всего несколько байт памяти, от-
дельные дескрипторы защиты подобъектам не назначаются, вместо
этого объекту, содержащему подобъекты, назначается один общий
дескриптор защиты, регламентирующий доступ ко всем подобъек-
там объекта.

Подобъекты объекта активного каталога могут содержать в себе
другие подобъекты, подобно тому, как дисковые и объектовые ди-
ректории могут содержать в себе файлы и поддиректории. Для объ-
екта поддерживается до 5 уровней вложенности подобъектов, иден-
тифицируемых числовыми значениями от 0 до 4:

0 — сам объект;
1 — наборы свойств (property sets);
2 — свойства (properties);
3–4 — в современных версиях Windows не используются.
Для объектов активного каталога определены два специфичных

права доступа:
• ADS RIGHT DS READ PROP — читать подобъект;
• ADS RIGHT DS WRITE PROP — изменять подобъект.

Также для отдельных типов объектов активного каталога мо-
гут вводиться расширенные (extended) права доступа, каждое такое

∗ Специальный термин «подобъект» введен в настоящем тексте для
того чтобы устранить терминологическую путаницу с двумя различными
значениями англоязычного термина «child object» — так называется, с
одной стороны, «полноценный» объект операционной системы, имеющий
собственный дескриптор защиты, по отношению к контейнеру, в котором
данный объект создан, а с другой стороны — не имеющий собственного
дескриптора защиты подобъект объекта активного каталога.

48 Г л а в а 2

право идентифицируется с помощью GUID. Например, для объекта
DMD (directory management domain) определены следующие расши-
ренные права:
• получить обновления базы данных с некоторого сервера;
• синхронизировать базу данных с некоторым сервером;
• поработать с топологией репликаций;
• обновить кэш схемы.

Обычные элементы управления доступом, примененные к объ-
екту активного каталога, управляют доступом ко всему объекту в
целом и, в частности, ко всем его подобъектам.

Для объектов активного каталога определены три особых типа
элементов управления доступом, не поддерживаемых для других
объектов операционной системы:
• объектно-специфический разрешающий;
• объектно-специфический запрещающий;
• объектно-специфический регистрирующий.

Элементы управления доступом, относящиеся к перечисленным
типам, отличаются от других элементов управления доступом нали-
чием полей GUID1 и GUID2. Поле GUID1 может содержать:
• тип подобъекта — в этом случае ACE регулирует доступ ко всем

подобъектам данного объекта, принадлежащим к указанному
типу;

• подобъект — ACE регулирует доступ к данному подобъекту и
подобъектам, вложенным в него, если таковые имеются;

• расширенное право доступа — ACE регулирует доступ к объекту
по данному праву, битовая маска с правами доступа игнориру-
ется;
Поле GUID2 может присутствовать только в объектах-контейне-

рах активного каталога. Это поле содержит тип дочерних объектов,
которые должны наследовать данный ACE. Если GUID2 не указан,
ACE наследуется дочерними объектами любых типов.

2.3.7. Порядок проверки прав доступа субъекта к объекту

Перед тем, как перейти к описанию алгоритма проверки прав
доступа субъекта к объекту Windows, введем следующие обозначе-
ния:

∼ — операция побитового отрицания;
& — операция побитовой конъюнкции (побитовое логическое И);
| — операция побитовой дизъюнкции (побитовое логическое

ИЛИ);

Управление доступом 49

m — маска доступа, описывающая права, запрошенные субъек-
том и пока не предоставленные ему. В начале алгоритма m содержит
все права доступа, запрошенные субъектом;

a(i) — маска доступа i-го ACE;
n — количество ACE в дескрипторе защиты объекта;
xi — i-й бит маски доступа x.
Алгоритм проверки прав доступа субъекта к объекту в Windows

выглядит следующим образом∗.
1. В масках доступа m, a(1), ..., a(n) транслируются все транс-

лируемые права доступа. Таким образом, в дальнейшем все маски
доступа, используемые алгоритмом, включают только специфичные
и стандартные права доступа (за исключением маски доступа m, ко-
торая может содержать виртуальные права доступа).

2. Создаются маски доступа g = 0 и d = 0. В дальнейшем маска
доступа g содержит права доступа к объекту, разрешенные субъекту,
а маска доступа d — права доступа, запрещенные субъекту.

3. Если субъект является владельцем объекта и запрашивает
право чтения и/или право изменения DACL, то соответствующий
бит выставляется в маске доступа g и сбрасывается в маске доступа
m. Другими словами, владелец объекта всегда имеет право читать
и модифицировать атрибуты защиты объекта∗∗.

4. Если субъект обладает привилегией овладевать любыми объ-
ектами, эта привилегия включена и субъект запрашивает право ов-
ладения данным объектом, то соответствующий бит выставляется
в маске доступа g и сбрасывается в маске доступа m. Другими
словами, администратор может объявить себя владельцем любого
объекта.

5. Если субъект обладает привилегией аудитора, эта приви-
легия включена и субъект запрашивает право получения доступа
к SACL данного объекта, то соответствующий бит выставляется в
маске доступа g и сбрасывается в маске доступа m.. Другими слова-
ми, аудитор всегда может получать доступ к SACL любого объекта.
Более того, поскольку данное право доступа является виртуальным
и не может содержаться в масках доступа a(1), ..., a(n), субъект, не

∗ Чтобы чрезмерно не усложнять восприятие алгоритма, мы предпо-
лагаем, что DACL объекта не содержит ACE с непустыми полями GUID1
и что субъект не запрашивает расширенных прав на доступ к объекту.

∗∗ До Windows NT 3.51 включительно данное правило распростра-
нялось только на право модификации DACL, но не на право получения
атрибутов защиты объекта.

50 Г л а в а 2

обладающий привилегией аудитора, не может обращаться к SACL
любого объекта операционной системы.

6. Если в маске доступа m присутствует виртуальное право
MAXIMUM ALLOWED, соответствующий бит в маске доступа m
сбрасывается, а затем выполняется цикл по i от 1 до n. На каждой
итерации цикла выполняются следующие действия:
• если i-й ACE является разрешающим и i-й ACE относится к

субъекту, обращающемуся к объекту∗, то выполняется присва-
ивание g = g | (a(i)&∼ d). Другими словами, права доступа из
a(i), которые не содержатся также и в d, добавляются в g;

• если i-й ACE является запрещающим и i-й ACE относится к
субъекту, обращающемуся к объекту, то выполняется присваи-
вание d = d | (a(i)&∼g). Другими словами, права доступа из
a(i), которые не содержатся также и в g, добавляются в d.
По окончании цикла маска доступа g содержит все права, пре-

доставленные субъекту на данный объект, а маска доступа d — все
права доступа к данному объекту, явно запрещенные субъекту.

7. Если m ̸= 0 и m ̸= d (т. е. существует право доступа, отно-
сительно которого решение еще не принято), выполняется цикл по
i от 1 до n. На каждой итерации цикла выполняются следующие
действия:
• если i-й ACE является разрешающим и i-й ACE относится к

субъекту, обращающемуся к объекту, то выполняются присваи-
вания g = g | (a(i)&m&∼ d), m = m&∼ g. Другими словами,
права доступа из a(i), которые также содержатся в m и не содер-
жатся в d, добавляются в g. Права доступа, предоставленные
субъекту на основании данного ACE, удаляются из m. Если по
окончании итерации цикла m = 0, цикл завершается;

• если i-й ACE является запрещающим и i-й ACE относится к
субъекту, обращающемуся к объекту, то выполняется присваи-
вание d = d | (a(i)&m&∼g). Другими словами, права доступа

∗ Здесь и далее мы будем говорить, что ACE относится к субъекту
S, если:
идентификатор субъекта ACE равен идентификатору субъекта S или
идентификатор субъекта ACE равен идентификатору группы, в которую
входит субъект S, или
идентификатор субъекта ACE равен идентификатору относительного су-
бъекта, от имени которого субъект S выступает по отношению к данному
объекту.

Compound ACE относится к субъекту S1, олицетворяющему субъек-
та S2, если идентификатор субъекта-сервера в compound ACE равен S1,
а идентификатор субъекта-клиента — соответственно S2.

Управление доступом 51

из a(i), которые также содержатся в m и не содержатся в g,
добавляются в d. Если по окончании итерации цикла m = d,
цикл завершается.
По окончании цикла, как нетрудно убедиться, маски доступа

содержат следующую информацию:
m — права доступа, запрошенные субъектом и не предостав-

ленные ему;
g — права доступа, предоставленные субъекту;
d — права доступа, запрошенные субъектом и явно запрещен-

ные ему.
8. Если m = 0, субъект получает доступ к объекту. При этом

маска g описывает права доступа, предоставленные субъекту. Ес-
ли m ̸= 0, субъект получает отказ в доступе к объекту. При этом
маска g описывает максимальное подмножество запрошенных прав
доступа к объекту, которые могут быть предоставлены субъекту.

2.3.8. Назначение дескрипторов защиты создаваемым
объектам
При создании в Windows нового объекта ему назначаются атри-

буты защиты согласно следующим правилам:
• Если процесс, создающий объект, явно указывает корректный

дескриптор защиты для создаваемого объекта, создаваемому
объекту назначаются указанный дескриптор защиты.

• Если процесс, создающий объект, указывает, что атрибуты за-
щиты должны быть установлены по умолчанию, или если ука-
занный дескриптор защиты некорректен, дескриптор защиты
объекта создается с помощью описанного ниже механизма нас-
ледования.

• Если по каким-то причинам наследование дескриптора защи-
ты невозможно, объекту присваивается дескриптор защиты на
основе данных, хранящихся в маркере доступа субъекта, созда-
ющего объект.
Владельцем созданного объекта, как правило, назначается поль-

зователь, создавший данный объект, т. е. содержимое соответствую-
щего поля создаваемого дескриптора защиты совпадает с содержи-
мым поля TOKEN USER текущего маркера доступа. Также владе-
льцем объекта может быть назначена группа, для которой в теку-
щем маркере доступа установлен флаг SE GROUP OWNER. Другие
субъекты доступа владельцами создаваемого объекта назначаться
не могут.

Если процесс, создающий объект, указал, что дескриптор защи-
ты объекта должен быть построен по умолчанию, идентификатор

52 Г л а в а 2

владельца объекта извлекается из поля TOKEN OWNER текущего
маркера доступа. Как правило, данное поле содержит личный иден-
тификатор пользователя, т. е. копию поля TOKEN USER. В некото-
рых версиях и конфигурациях Windows пользователи, входящие в
группу Administrators, получают в качестве TOKEN OWNER иден-
тификатор группы Administrators, для которой в списке TOKEN
GROUPS установлен флаг SE GROUP OWNER. Объектам, создава-
емым с использованием такого маркера доступа, в качестве иденти-
фикатора владельца назначается идентификатор группы Administ-
rators.

Первичной группой владельца объекта может назначаться лю-
бая группа, идентификатор которой присутствует в текущем марке-
ре доступа. По умолчанию идентификатор первичной группы вла-
дельца извлекается из поля TOKEN PRIMARY GROUP текущего
маркера доступа.

DACL создаваемого дескриптора защиты формируется при нас-
ледовании из ACE, входящих в DACL объекта-родителя. То, какие
ACE объекта-родителя будут включены в DACL создаваемого объ-
екта, определяется следующими флагами ACE:
• CONTAINER INHERIT ACE (с) — если этот флаг установлен и

создаваемый объект является контейнером, данный ACE дол-
жен включаться в DACL создаваемого объекта;

• OBJECT INHERIT ACE (o) — если этот флаг установлен и соз-
даваемый объект не является контейнером, данный ACE дол-
жен включаться в DACL создаваемого объекта;

• NO PROPAGATE INHERIT ACE (n) — если этот флаг установ-
лен, при наследовании ACE флаги c и o сбрасываются. Други-
ми словами, при наличии этого флага ACE наследуется только
один раз;

• INHERIT ONLY ACE (i) — если этот флаг установлен, данный
ACE игнорируется при проверке прав доступа к объекту и ис-
пользуется только при наследовании.
Если создаваемый объект не является контейнером, в DACL соз-

даваемого объекта включаются те и только те ACE объекта-родите-
ля, в которых установлен флаг o. Все флаги унаследованных ACE
сбрасываются. Если маска доступа ACE объекта-родителя содер-
жит отображаемые права доступа, перед наследованием ACE про-
изводится их отображение.

Если же создаваемый объект является контейнером, наследу-
ются следующие ACE:

Управление доступом 53

• ACE, в которых установлен флаг c, при этом, если в ACE уста-
новлен флаг n, после наследования флаги c и o сбрасываются;

• ACE, в которых не установлены ни флаг c, ни флаг n, но ус-
тановлен флаг o. При этом в унаследованном ACE устанавли-
вается флаг i.
Как правило, DACL контейнера содержит две группы ACE:

• ACE для разграничения доступа к объекту — установлен флаг с;
• ACE для назначения объектам, создаваемым внутри контейне-

ра — установлены флаги o и i.
В маски доступа ACE из второй группы не должны включаться

специфичные права доступа, поскольку при создании в контейнере
объекта, не являющегося контейнером, специфичные права доступа
имеют для этого объекта совершенно иной смысл, чем для контей-
нера. Если внутри одного контейнера создаются объекты разных
типов и в DACL контейнера содержится ACE, маска доступа кото-
рого содержит специфичные права доступа, то при наследовании
данного ACE специфичные права доступа будут для объектов раз-
ных типов интерпретироваться по-разному. В большинстве случаев
это приводит к ошибкам.

SACL создаваемого объекта наследуется по тем же правилам,
что и DACL.

В активном каталоге при наследовании DACL дополнительно
учитывается поле GUID2 каждого ACE.

Начиная с версии 2000, в Windows поддерживается функция ав-
томатического наследования изменений в DACL и SACL, управля-
емая соответствующими флагами дескриптора защиты (по умолча-
нию они включены для всех объектов). В этом случае при каждом
изменении в дескрипторе защиты контейнера наследование списков
доступа автоматически повторяется для всех объектов, лежащих
внутри контейнера, за исключением тех, в дескрипторах защиты
которых в поле флагов установлен бит 12 «запретить автоматичес-
кое наследование DACL» или, соответственно, бит 13 «запретить
автоматическое наследование SACL». При этом подконтейнеры кон-
тейнера обходятся рекурсивно∗. Данная функция заметно упроща-
ет администрирование, позволяя администратору одной операцией

∗ Допускается ситуация, когда DACL или SACL дочернего объекта
вместо ACE содержит ссылку на соответствующий список доступа в дес-
крипторе защиты объекта-родителя. В этом случае при изменении деск-
риптора защиты рекурсивный обход дочерних объектов не нужен, но при
каждой проверке прав доступа к дочернему объекту приходится обраща-
ться к дескриптору защиты объекта-родителя.

54 Г л а в а 2

вносить сходные изменения в дескрипторы защиты сразу всех объ-
ектов некоторого поддерева дерева объектов операционной системы,
при этом отдельные ветви дерева могут быть заблокированы от та-
ких изменений.

Унаследованные ACE всегда располагаются после явно назна-
ченных и, следовательно, имеют более низкий приоритет.

2.3.9. Мандатный контроль целостности
Начиная с Windows Vista, в операционных системах семейст-

ва Windows реализован механизм мандатного контроля целостности
(mandatory integrity control, MIC), основанный на формальной мо-
дели Биба [4]. Основная идея MIC заключается в том, что объекты
операционной системы разделяются на несколько уровней в зави-
симости от степени доверия к коду обращающегося к объекту про-
цесса, при этом модификация доверенных объектов недоверенными
процессами не допускается. Мандатный контроль целостности во
многом похож на мандатное управление доступом, разница состоит
в том, что мандатный контроль целостности решает задачу обеспе-
чения не конфиденциальности, а целостности информации. Так же,
как и при мандатном управлении доступом, при реализации ман-
датного контроля целостности каждому объекту операционной сис-
темы присваивается мандатная метка. В Windows мандатная метка
целостности физически представляет собой целое число.

В Windows 7 поддерживаются следующие мандатные метки це-
лостности:
• SECURITY MANDATORY UNTRUSTED RID (0) — минималь-

ный уровень целостности, не используется;
• SECURITY MANDATORY LOW RID (4096) — низкий уровень

целостности, не используется;
• SECURITY MANDATORY MEDIUM RID (8192) — средний уро-

вень целостности, назначается процессам прикладных программ
по умолчанию;

• SECURITY MANDATORY HIGH RID (12288) — высокий уро-
вень целостности, может быть назначен процессу прикладной
программы администратором;

• SECURITY MANDATORY SYSTEM RID (16384) — системный
уровень целостности, автоматически назначается всем систем-
ным процессам, процессам прикладных программ назначаться
не может.
Поскольку числовые значения мандатных меток целостности

разделены большими интервалами, в будущих версиях Windows воз-
можно введение промежуточных уровней мандатной целостности,

Управление доступом 55

позволяющих администраторам операционной системы более тонко
манипулировать степенью доверия тем или иным процессам.

В имеющихся версиях Windows вышеперечисленные мандатные
метки интерпретируются как уровни целостности. Чем больше чис-
ловое значение метки, тем более высоким считается уровень целос-
тности. Основная идея мандатного контроля целостности заклю-
чается в том, что обращения процессов к объектам, потенциально
нарушающие целостность объектов (операции записи и удаления,
понимаемые в широком смысле этих слов) разрешаются только в
том случае, когда уровень целостности субъекта не уступает уровню
целостности объекта, к которому обращается данный субъект. Дру-
гими словами, модификация «низкоцелостным» субъектом «высо-
коцелостного» объекта запрещается независимо от дискреционных
полномочий субъекта доступа, от имени которого функционирует
процесс, и атрибутов защиты объекта. Таким образом, модифика-
ция объектов операционной системы, важных с точки зрения ее без-
опасности, разрешается только доверенным процессам, выполняю-
щимся от имени специально уполномоченных субъектов.

Кроме того, процесс, выполняющийся на низком уровне целос-
тности, не может получать доступ к процессам, выполняющимся на
более высоких уровнях целостности, и, в том числе, не может на-
правлять оконные сообщения их окнам.

Уровень целостности процесса физически хранится в его мар-
кере доступа в списке групп. Каждому определенному в системе
уровню целостности соответствует свой идентификатор SID, име-
ющий вид S-1-16-RID, где RID — числовое значение хранящейся в
нем мандатной метки целостности. Помимо характерного вида поля
SID, элемент списка групп, содержащий уровень целостности про-
цесса, отличается от других элементов данного списка установлен-
ным флагом SE GROUP INTEGRITY.

Уровень целостности объекта доступа хранится в его дескрип-
торе защиты в списке SACL в виде особого элемента ACE типа
SYSTEM MANDATORY LABEL ACE. Данный ACE содержит SID
уровня целостности вместо SID субъекта доступа. Большинство
утилит администрирования, позволяющих просматривать SACL, не
позволяют работать с данным ACE.

Каждому процессу, выполняющемуся от имени администратора
операционной системы на среднем уровне мандатной целостности,
назначается особый ограниченный маркер доступа, отличающийся
от обычного маркера доступа следующими деталями:

56 Г л а в а 2

• все привилегии, кроме пяти наименее опасных, необратимо уда-
лены;

• группа Administrators помечена флагом «только для запрета»;
• в список ограничивающих SID добавлен единственный SID

группы Users.
Таким образом, полномочия процесса, выполняющегося на

среднем уровне мандатной целостности от имени администратора
операционной системы, практически не отличаются от полномочий
процесса, выполняющегося от имени непривилегированного пользо-
вателя. Это позволяет реализовать принцип минимизации полно-
мочий без создания отдельных учетных записей для повседневной
работы и для администрирования операционной системы. По умол-
чанию все программы, запускаемые администратором, запускаются
на среднем уровне мандатной целостности. Если администратору
нужно запустить какой-то процесс на высоком уровне мандатной
целостности, это может быть сделано с помощью пункта Run as
administrator контекстного меню Windows Explorer. Следует отме-
тить, что поясняющий текст для данной строки меню выбран разра-
ботчиками операционной системы явно неудачно. Автору неоднок-
ратно приходилось слышать удивленные реплики пользователей:
«Что значит «от имени администратора»? Я и есть администратор!»

Некоторые утилиты администрирования запускать бессмыслен-
но на среднем уровне мандатной целостности. Для упрощения ра-
боты пользователя с такими программами в манифест EXE-файла
включен специальный атрибут requestedExecutionLevel, который мо-
жет принимать следующие значения:
• asInvoker (по умолчанию) — выполнять программу на том же

уровне мандатной целостности, на котором выполняется про-
цесс-родитель;

• highestAvailable — выполнять программу на максимально дос-
тупном в настоящий момент уровне мандатной целостности;

• requireAdministrator — выполнять программу только на высо-
ком или системном уровнях мандатной целостности.
Уровень мандатной целостности, на котором работает процесс,

определяется при старте процесса и не может быть изменен в даль-
нейшем. Некоторые программы могут создавать у пользователя ил-
люзию, что при нажатии определенной кнопки программа переме-
щается на более высокий уровень мандатной целостности. Так, на-
пример, программа Task Manager при нажатии кнопки Show proces-
ses from all users создает свою копию, выполняющуюся на высоком

Управление доступом 57

уровне мандатной целостности, после чего завершает работу. У по-
льзователя создается иллюзия, что процесс Task Manager перемес-
тился со среднего уровня мандатной целостности на высокий.

Для того чтобы мандатный контроль целостности реально пов-
ышал защищенность операционной системы, в ней должен быть ре-
ализован дополнительный механизм, затрудняющий несанкциони-
рованный запуск вредоносных приложений на высоком уровне ман-
датной целостности. В Windows такой механизм введен начиная с
Windows Vista, он называется User Account Control (контроль учет-
ных записей, UAC), его назначение и реализация слабо соотносятся
с названием механизма.

При включенном UAC любая попытка запуска программы на
высоком уровне мандатной целостности сопровождается выдачей
пользователю запроса на подтверждение данного действия. Если
EXE-файл запускаемой программы входит в состав дистрибутива
операционной системы, данный запрос имеет следующий вид:

Если программный файл подписан цифровой подписью компа-
нии Microsoft или другой доверенной компании-разработчика, зап-
рос UAC имеет вид

Если же компания-разработчик запускаемого файла неизвестна
разработчикам Windows или не указана, запрос UAC имеет вид

58 Г л а в а 2

Очевидно, в последнем случае окно предупреждения выглядит
наиболее угрожающе.

Заметим, что текстовое содержание вопроса, написанного в вер-
хней части приведенных окон, не вполне соответствует сути запро-
са UAC∗. Выдавая запрос UAC, операционная система фактически
спрашивает пользователя-администратора, доверяет ли он запуска-
емой программе в достаточной мере, чтобы позволить ей выполня-
ться на высоком уровне мандатной целостности. При этом совер-
шенно не обязательно, чтобы эта программа вносила изменения в
конфигурацию компьютера. Если программа, например, инжекти-
рует мобильный код в адресное пространство системного процесса,
никаких изменений в конфигурации компьютера не происходит.

При выдаче запроса UAC видеосистема компьютера, как прави-
ло, переключается на особый защищенный рабочий стол, недоступ-
ный прикладным программам, выполняющимся на пользовательс-
ком рабочем столе∗∗. Непосредственно перед переключением дела-
ется снимок экрана пользовательского рабочего стола, этот снимок
подвергается затемнению цветов (функция MaskBlt или аналогич-
ная) и назначается защищенному рабочему столу в качестве обоев.
Это создает иллюзию, что запрос UAC задается на том же рабо-
чем столе, на котором выполняются прикладные программы этого
пользователя.

Администратор операционной системы может управлять «на-
зойливостью» UAC, выбирая из следующих четырех основных кон-
фигураций:

∗ В русской версии Windows этот запрос, кроме того, содержит отк-
ровенно безграмотную фразу «внести изменения на этом компьютере».

∗∗ Такой же механизм применяется в Windows для защиты пароля,
вводимого пользователем при входе в систему, от перехвата программны-
ми закладками.

Управление доступом 59

• UAC полностью отключен, все прикладные программы запус-
каются администратором на высоком уровне мандатной целос-
тности;

• UAC включен, но запросы UAC выводятся на пользовательский
рабочий стол;

• UAC включен, запросы UAC выводятся на защищенный рабо-
чий стол, запуск большинства штатных утилит администриро-
вания, входящих в дистрибутив Windows, не сопровождается
запросами UAC (конфигурация по умолчанию для Windows 7);

• UAC включен, запросы UAC выводятся на защищенный рабо-
чий стол, запуск любой программы на высоком уровне мандат-
ной целостности сопровождается запросом UAC без каких бы то
ни было исключений (конфигурация по умолчанию для Win-
dows Vista).
Многие администраторы, не понимая смысла UAC, воспринима-

ют его как источник назойливых глупых вопросов и отключают сра-
зу после установки Windows. Такая политика безопасности наруша-
ет принцип минимизации полномочий пользователей и тем самым
делает конфигурацию операционной системы уязвимой для воздейс-
твий вредоносного программного обеспечения, в частности, компью-
терных вирусов. Единственное разумное основание отключать UAC
имеет место, когда пользователь-администратор в силу индивиду-
альных психологических особенностей автоматически всегда нажи-
мает кнопку «Да», не задумываясь над заданным вопросом. В этом
случае такой администратор должен завести себе для повседневной
работы особую непривилегированную учетную запись. Как альтер-
нативное решение, можно установить конфигурацию UAC, в кото-
рой администратор, отвечая на запрос UAC, должен не просто на-
жать кнопку «Да», но и повторно ввести свой пароль:

60 Г л а в а 2

В большинстве конфигураций Windows запросы UAC не вы-
даются встроенному пользователю-администратору, автоматически
создаваемому в ходе установки операционной системы. Поскольку
эта учетная запись предназначена для использования только в экс-
тренных случаях, но не для повседневной работы, данная политика
обычно не приводит к существенному снижению безопасности сис-
темы.

В целом MIC и UAC являются очень мощным защитным меха-
низмом. Подобно механизмам su и sudo в операционных системах
семейства UNIX, MIC и UAC в Windows позволяют осуществлять ра-
зумное ограничение полномочий пользователей-администраторов,
не прибегая к созданию дополнительных учетных записей. Это де-
лает повседневную работу пользователей-администраторов заметно
более удобной.

2.3.10. Элементы изолированной программной среды

Начиная с Windows XP, в подсистему разграничения доступа
Windows интегрирован интерфейс SAFER, вносящий в операцион-
ную систему элементы изолированной программной среды. Этот
интерфейс позволяет распределить установленные в системе прог-
раммные модули по уровням надежности и определить для каждого
уровня круг пользователей, которые могут запускать программные
модули данного уровня. В терминах системы правил, приведенной в
п. 2.2.2, интерфейс SAFER поддерживает правило 5 изолированной
программной среды, но не поддерживает правило 4.

Правила SAFER встроены в групповую политику активного ка-
талога, доступ к правилам SAFER реализуется посредством контей-
нера Security Settings\Software Restriction Policies групповой поли-
тики организационного подразделения, при этом в качестве органи-
зационного подразделения может выступать группа пользователей
и даже конкретный пользователь. Порядок наследования элемен-
тов групповой политики, входящих в данный контейнер, ничем не
отличается от порядка наследования, принятого для других кон-
тейнеров.

Контейнер Security Settings\Software Restriction Policies содер-
жит два вложенных контейнера.

В контейнере Security Levels перечисляются уровни SAFER, оп-
ределенные в данной системе. В современных версиях Windows под-
держивается три уровня:
• Disallowed — запуск программы запрещен независимо от состо-

яния матрицы доступа;

Управление доступом 61

• Basic User (поддерживается начиная с Windows Vista) — запуск
программы может быть разрешен только на уровне мандатной
целостности не выше среднего;

• Unrestricted — возможность запуска программы полностью оп-
ределяется правами доступа субъекта к исполняемому файлу
программы, функции SAFER на данном уровне не задейству-
ются.
Для каждого поддерживаемого уровня хранится текстовое опи-

сание, а также сведения о том, является ли данный уровень уров-
нем, заданным по умолчанию. Если по умолчанию задан уровень
Disallowed, в системе разрешена загрузка только тех программных
модулей, которые явно перечислены в контейнере Additional Rules.
Отметим, что установка уровня Disallowed в качестве уровня по
умолчанию требует от администратора операционной системы пол-
ного и точного перечисления исполняемых модулей установленных
приложений в контейнере Additional Rules, в противном случае сис-
тема станет неработоспособной.

Контейнер Additional Rules содержит правила SAFER, позволя-
ющие изменять уровни конкретных программных модулей. Могут
устанавливаться отдельные правила для программных модулей:
• имеющих указанный сертификат;
• имеющих указанное значение хеш-функции;
• загруженных из указанной зоны Internet;
• имеющих заданное полное имя.

Правила, основанные на хеш-функциях, позволяют запрещать
загрузку конкретных программных модулей независимо от имени,
под которым данный программный модуль загружается в данный
момент. Правила данной группы удобно использовать для запреще-
ния запуска пользователями распространенных компьютерных игр
(Lines, Zuma и т. п.). Но если пользователь изменяет содержимое
запрещенного к исполнению программного файла, например, при-
писав к нему один дополнительный байт, этот программный файл
перестает быть запрещенным.

Следует отметить, что правила SAFER, как и остальные пра-
вила групповой политики, могут применяться не сразу после ус-
тановки, а по прошествии некоторого времени. Если необходимо
обеспечить немедленное применение установленных правил SAFER,
операционную систему следует перезагрузить.

Интерфейс SAFER документирован в MSDN, однако документа-
ция носит крайне фрагментарный характер и не позволяет составить

62 Г л а в а 2

целостное представление о программной реализации данного интер-
фейса и возможностях его использования программными средства-
ми сторонних производителей.

2.4. Управление доступом в UNIX
В операционных системах семейства UNIX к объектам доступа

относятся файлы, директории, ссылки (links), устройства и имено-
ванные каналы (named pipes). В большинстве современных версий
UNIX выполняющиеся процессы также рассматриваются как объек-
ты доступа, размещенные в специальной директории /proc. Атрибу-
ты защиты этих объектов могут учитываться при доступе отладчика
к адресному пространству процесса, при отправке процессу сигна-
лов и т. п.

К субъектам доступа в UNIX относятся пользователи (включая
псевдопользователей) и группы пользователей. В ранних версиях
UNIX действовало ограничение, заключающееся в том, что каждый
пользователь операционной системы мог входить в одну и только
одну группу, т. е. весь список пользователей операционной систе-
мы разбивался на некоторое количество непересекающихся групп.
В современных UNIX-системах данное ограничение обходится теми
или иными способами, однако неявное предположение о том, что
пользователь может входить только в одну группу, оказало замет-
ное влияние на внутреннюю структуру подсистемы управления дос-
тупом UNIX.

Среди пользователей UNIX выделяется предопределенный
пользователь root, обладающий в операционной системе абсолют-
ными полномочиями и имеющий возможность игнорировать любые
принятые в системе правила управления доступом.

Пользователи и группы пользователей идентифицируются в
UNIX числовыми идентификаторами, уникальными в пределах од-
ного экземпляра операционной системы. Пользователь root всегда
имеет идентификатор 0. Идентификаторы пользователей обозна-
чаются стандартным обозначением UID (User ID), идентификаторы
групп — GID (Group ID).

Все методы доступа ко всем объектам регулируются в UNIX
тремя правами доступа:
• Read (R) — чтение;
• Write (W) — запись;
• Execute (X) — выполнение.

Для файлов смысл всех трех прав доступа вполне очевиден.
Для каталогов право Read дает возможность получения списка вло-

Управление доступом 63

женных файлов и подкаталогов, право Write — возможность соз-
дания, переименования и/или удаления вложенных файлов и под-
каталогов∗, право Execute — переход в каталог (команда cd). Для
устройств каждое право доступа дает возможность обращения к со-
ответствующей функции драйвера, обслуживающего данное устрой-
ство. Для именованного канала право Read требуется для получе-
ния информации, право Write — для отправки, право Execute не
определено.

Понятие привилегии субъекта доступа в ранних версиях UNIX-
систем отсутствовало. В дальнейшем эта концепция вводилась в
разных ветвях эволюции UNIX независимо друг от друга. В наи-
более распространенной на сегодняшний день ее реализации, при-
меняемой, в частности, в Linux, привилегии называются возмож-
ностями (capabilities). Так, в ядре Linux 2.6.34 определены, в том
числе, следующие возможности субъектов доступа:
• CAP CHOWN — позволяет модифицировать идентификаторы

владельца или группы владельца любого объекта;
• CAP DAC OVERRIDE — позволяет игнорировать любые огра-

ничения на доступ к объектам, задаваемые списками управле-
ния доступом;

• CAP FOWNER — позволяет игнорировать задаваемые вектора-
ми доступа ограничения на доступ к объектам, владельцем ко-
торых является текущий субъект доступа;

• CAP FSETID — позволяет устанавливать в векторе доступа объ-
екта биты SUID и SGID для объектов, владельцем которых не
является текущий субъект доступа;

• CAP KILL — позволяет направлять сигналы процессам других
субъектов доступа;

• CAP SETGID — позволяет устанавливать бит SGID в векторе
доступа объекта;

• CAP SETUID — позволяет устанавливать бит SUID в векторе
доступа объекта;

• CAP SETPCAP — позволяет включать или выключать любую
привилегию у любого процесса;

• CAP NET BROADCAST — позволяет отправлять широковеща-
тельные сетевые пакеты;

• CAP NET ADMIN — предоставляет практически неограничен-
ные возможности управления сетевой подсистемой операцион-
ной системы;

∗ Вопреки распространенному мнению, для удаления объекта в UNIX
вовсе не обязательно иметь право Write на сам этот объект.

64 Г л а в а 2

• CAP IPC OWNER — позволяет процессу осуществлять межп-
роцессное взаимодействие с процессами, выполняющимися от
имени других субъектов доступа;

• CAP SYS MODULE — позволяет загружать и выгружать моду-
ли расширения ядра операционной системы;

• CAP SYS RAWIO — позволяет выполнять низкоуровневые опе-
рации ввода-вывода (ioperm, iopl), взаимодействовать с USB-
устройствами посредством виртуального файла /proc/bus/usb;

• CAP SYS CHROOT — позволяет использовать системный вы-
зов chroot;

• CAP SYS PTRACE — позволяет использовать системный вызов
ptrace в отношении любых процессов операционной системы;

• CAP SYS ADMIN — позволяет выполнять большинство опера-
ций по администрированию операционной системы, не регла-
ментируемых другими привилегиями;

• CAP SYS BOOT — позволяет перезагружать операционную
систему;

• CAP SYS NICE — позволяет управлять диспетчеризацией про-
цессов, выполняющихся от имени других субъектов доступа;

• CAP SYS RESOURCE — позволяет управлять квотами аппа-
ратных ресурсов, предоставляемых различным компонентам
операционной системы, а также прикладным процессам;

• CAP SYS TIME — позволяет управлять системными таймера-
ми;

• CAP SYS TTY CONFIG — позволяет управлять консольными
терминалами.
Каждому процессу UNIX присваиваются четыре числовых иден-

тификатора:
• UID — идентификатор пользователя, породившего данный про-

цесс;
• GID — идентификатор группы пользователя∗, породившего

данный процесс;
• EUID — эффективный идентификатор пользователя;
• EGID — эффективный идентификатор группы пользователя.

Обычно EUID совпадает с UID, а EGID — с GID.

∗ Здесь и далее под словосочетанием «группа пользователя» мы по-
нимаем ту единственную группу, в которую мог входить пользователь в
старых версиях UNIX. В современных UNIX-системах, где пользователь
может одновременно входить в несколько групп, соответствующие аспек-
ты разграничения доступа реализуются более сложно, причем особеннос-
ти реализации заметно различаются в разных версиях.

Управление доступом 65

Каждый объект UNIX может иметь атрибуты защиты, включа-
ющие в себя следующие три элемента:
• идентификатор (UID) владельца объекта;
• идентификатор группы (GID) владельца объекта;
• вектор доступа.

Вектор доступа включат в себя следующие элементы:
• является ли объект каталогом — 1 бит (D);
• бит SUID;
• бит SGID;
• бит sticky;
• права доступа владельца — 3 бита (RWX);
• права доступа пользователей, входящих в группу владельца —

3 бита (RWX);
• права доступа всех остальных пользователей — 3 бита (RWX).

Проверка прав доступа субъекта к объекту осуществляется по
следующему алгоритму.

1. Если EUID процесса равен нулю (т. е. процесс выполняется
от имени суперпользователя), доступ к объекту предоставляется без
каких бы то ни было дополнительных проверок.

2. Если EUID процесса совпадает с UID владельца объекта, пра-
ва доступа, запрошенные процессом, сравниваются с правами, раз-
решенными владельцу данного объекта. Если все права, запрошен-
ные процессом, разрешены владельцу объекта, доступ разрешен, в
противном случае — запрещен.

3. Если EUID процесса отличается от UID владельца объекта,
но EGID процесса совпадает с GID владельца объекта, права досту-
па, запрошенные процессом, сравниваются с правами, разрешенны-
ми пользователям, входящим в группу владельца объекта. Если все
права, запрошенные процессом, разрешены группе владельца объ-
екта, доступ разрешен, в противном случае — запрещен

4. Если EUID процесса отличается от UID владельца объекта и
EGID процесса отличается от GID владельца объекта, права досту-
па, запрошенные процессом, сравниваются с правами, разрешенны-
ми пользователям, не входящим в группу владельца объекта (всем
остальным пользователям). Если все права, запрошенные процес-
сом, разрешены пользователям, не входящим в группу владельца
объекта, доступ разрешен, в противном случае — запрещен.

Бит D всегда выставлен у объектов-каталогов и сброшен у всех
остальных объектов.

Бит sticky в современных UNIX-системах применяется только в
отношении директорий. Если в векторе доступа директории уста-

66 Г л а в а 2

новлен данный бит, удаление файлов и поддиректорий разрешается
только их владельцам. Обычно бит sticky устанавливают на об-
щедоступные для записи директории, предназначенные для обмена
файлами между пользователями. Создавать объекты в такой дирек-
тории могут все пользователи, но удалять уже созданные объекты
может только их владелец или суперпользователь.

В процессе функционирования любой операционной системы
время от времени возникают ситуации, когда пользователь для вы-
полнения некоторых действий должен получить полномочия, недос-
тупные ему в другое время. Например, пользователь должен иметь
возможность изменять свой пароль, но для этого пользователь дол-
жен иметь доступ на запись к базе паролей, что недопустимо — тогда
пользователь сможет менять и чужие пароли.

В операционных системах семейства UNIX для решения данной
проблемы используется механизм SUID/SGID, позволяющий поль-
зователю запустить программу от имени другого пользователя.

Если в векторе доступа исполняемого файла установлен бит
SUID, то процесс, порожденный посредством данного файла, в ка-
честве EUID получает не EUID родительского процесса, а UID вла-
дельца запускаемого файла. Аналогично, если в векторе доступа
файла установлен бит SGID, процесс получает в качестве EGID GID
владельца запускаемого файла.

Когда пользователь UNIX-системы меняет свой пароль, он за-
пускает утилиту passwd, владельцем которой является суперполь-
зователь root и в векторе доступа которой установлены биты SUID и
SGID. В результате программа passwd запускается с полномочиями
суперпользователя, что позволяет ей получить доступ к файлу, в
котором хранятся аутентификационные данные пользователей опе-
рационной системы.

Схожим образом решаются и другие задачи, требующие вре-
менного повышения полномочий пользователя.

Наличие в UNIX суперпользователя root с ничем не ограни-
ченными полномочиями создает серьезные проблемы не только для
безопасности, но и для надежности операционной системы. Любая
ошибка, допущенная суперпользователем при работе с командной
строкой, может стать фатальной. Если, например, в команде rm -rf
/*.bak ошибочно поставить пробел между звездочкой и точкой, сама
операционная система и все хранящиеся в ней данные будут немед-
ленно и необратимо уничтожены. Большинство администраторов
UNIX в настоящее время избегают авторизоваться в операционной
системе в качестве суперпользователя на протяжении всего сеанса

Управление доступом 67

работы с системой. Таким образом, принцип минимизации полно-
мочий пользователей соблюдается в UNIX-системах фактически сам
собой — после нескольких ошибок администрирования, фатальных
для операционной системы, администраторы неизбежно приучают-
ся руководствоваться им в повседневной работе.

Обычно администратор UNIX-системы большую часть времени
работает в системе с полномочиями обычного пользователя. Если
администратору необходимо выполнить какие-то действия, требую-
щие повышенных полномочий, он может воспользоваться утилитой
командной строки su. Эта утилита получает имя и пароль пользо-
вателя (на практике чаще всего используется имя root, его можно не
вводить, считается, что оно задано по умолчанию), и, если введены
корректные данные, инициирует сеанс работы указанного пользо-
вателя на текущем терминале, запуская новую копию командного
интерпретатора. Прекращение сеанса работы пользователя, ини-
циированного командой su, происходит естественным образом при
завершении командного интерпретатора, например, командой exit.

Во многих UNIX-системах пользоваться утилитой su по умолча-
нию (если администратор не менял настройки аутентификации для
программы su) разрешено только пользователям, входящим в груп-
пу wheel. Иногда эту группу неформально сравнивают с группой ад-
министраторов Windows, а использование утилиты su — с запуском
программы Windows на повышенном уровне мандатной целостности.

На практике вместо su чаще применяется утилита sudo, реа-
лизующая выполнение от имени суперпользователя (или другого
пользователя, если указан флаг -u) команды, являющейся парамет-
ром команды sudo. Например, команда sudo mc запускает от имени
суперпользователя файловый менеджер Midnight Commander. Сре-
ди UNIX-администраторов распространена шутка, что команда sudo
подобна слову «пожалуйста» в устной речи (ее применение повыша-
ет вероятность успешного выполнения запроса).

При первом вводе sudo пользователь должен повторно ввести
свой пароль (именно свой, а не пароль того пользователя, от име-
ни которого будет выполнена команда). После этого в течение не-
которого времени (по умолчанию пять минут) пользователь может
использовать команду sudo без пароля. Порядок использования ко-
манды sudo описывается конфигурационным файлом /etc/sudoers,
полное описание формата и содержания которого выходит за рамки
настоящего пособия. Мы ограничимся лишь несколькими просты-
ми примерами настроек /etc/sudoers.
Члены группы wheel могут выполнять через sudo любые команды

%wheel ALL = (ALL) ALL

68 Г л а в а 2

Суперпользователь root может выполнять через sudo любые

команды, не вводя никаких паролей (обычно суперпользователь

не нуждается в sudo, но команда sudo может встретиться в

скрипте, исполняемом от имени суперпользователя)

root ALL = NOPASSWD: ALL

Пользователь jack может выполнять через sudo любые команды,

если данный компьютер относится к одной из указанных

подсетей (файл /etc/sudoers часто копируют на все компьютеры

защищаемой сети без изменений)

Host Alias CSNETS = 128.138.243.0 128.138.204.0/24 128.138.242.0

jack CSNETS ALL

В настоящее время стандартная для UNIX система управления
доступом на основе векторов фиксированной длины оценивается бо-
льшинством экспертов как устаревшая. Во многих современных вер-
сиях UNIX в дополнение к векторам доступа поддерживаются спис-
ки доступа переменной длины. Как правило, в реализации списков
доступа в UNIX заметно влияние особенностей реализации анало-
гичного механизма в Windows. Так, например, в операционной сис-
теме Mac OS типы, стандартный порядок расположения и флаги
наследования элементов управления доступом точно соответствуют
аналогичным элементам подсистемы управления доступом Windows.
Кроме того, в Mac OS стандартные права read, write и execute до-
полнены следующими правами доступа:
• delete — удалить объект;
• append — дописать информацию в файл или создать поддирек-

торию в директории;
• read attributes — получить атрибуты объекта;
• write attributes — изменить атрибуты объекта;
• read extended — получить расширенные атрибуты объекта;
• write extended — изменить расширенные атрибуты объекта;
• read permissions — получить список доступа объекта;
• write permissions — изменить список доступа объекта;
• take ownership — овладеть объектом (назначить себя новым вла-

дельцем объекта).
Данный набор прав доступа почти полностью (кроме права дос-

тупа «ожидать объект») совпадает с набором стандартных и специ-
фичных прав доступа, определенных для файловых объектов Win-
dows. Это не случайное совпадение, оно введено преднамеренно, для
обеспечения совместимости с активным каталогом Windows. Более
того, Mac OS, подобно Windows, поддерживает разрешающие и зап-
рещающие элементы управления доступом. Принятые в Mac OS
правила разрешения противоречий при анализе списков доступа в

Управление доступом 69

точности совпадают с аналогичными правилами, принятыми в Win-
dows. Фактически между алгоритмами проверки прав доступа, реа-
лизованными в Mac OS и в Windows, есть только одно существенное
различие — в Mac OS существует суперпользователь root, имеющий
полный доступ ко всем объектам операционной системы, в Windows
подобного пользователя нет.

В отличие от большинства операционных систем семейства
UNIX, в Mac OS поддерживается назначение атрибутов защиты соз-
даваемым объектам путем наследования. Алгоритм наследования
явно скопирован с аналогичного алгоритма Windows и совпадает с
ним с точностью до нескольких несущественных деталей.

Анализ списков доступа объекта при проверке прав доступа су-
бъекта к объекту реализован в Mac OS в особом модуле расширения
ядра, носящем имя Kauth. Допускается дополнение этого модуля
другими модулями, в том числе и других производителей, осущест-
вляющими дополнительные проверки прав доступа субъекта к объ-
екту.

По умолчанию списки доступа в Mac OS не включены ни на
каких разделах жесткого диска. Включить или выключить их под-
держку для конкретного раздела можно с помощью специальной
утилиты командной строки, носящей имя fsaclctl.

Вопросы для самопроверки
1. Что называется объектом доступа, субъектом доступа, методом доступа?
2. Что называется правом доступа субъекта к объекту?
3. Что называется управлением доступа субъектов к объектам?
4. Каким требованиям должны удовлетворять правила управления досту-

пом субъектов к объектам?
5. Как формулируется система правил дискреционного управления дос-

тупом?
6. Как в реальных операционных системах кодируется и хранится матрица

доступа?
7. Как формулируется система правил изолированной программной среды?
8. Каково основное предназначение изолированной программной среды?
9. Каково основное предназначение мандатного управления доступом?
10. Как формулируется система правил мандатного управления доступом?
11. Какие проблемы возникают при практической реализации мандатного

управления доступом в операционной системе?
12. Как решаются проблемы, возникающие при практической реализации

мандатного управления доступом в операционной системе?
13. Каковы достоинства и недостатки рассмотренных систем правил уп-

равления доступом?
14. В каких ситуациях целесообразно применение мандатного управления

доступом, изолированной программной среды?

70 Г л а в а 2

15. Какие типы объектов доступа операционной системы Windows вы
знаете?

16. Каких стандартных псевдопользователей Windows вы знаете?
17. Какие специальные группы пользователей Windows вы знаете?
18. Какие стандартные методы доступа Windows вы знаете?
19. Какие специфичные методы доступа определены в Windows для объ-

ектов типа «файл»?
20. Какие специфичные методы доступа определены в Windows для объ-

ектов типа «процесс»?
21. Какие специфичные методы доступа определены в Windows для объ-

ектов типа «сервис»?
22. Какие специфичные методы доступа определены в Windows для объ-

ектов типа «событие»?
23. Как связаны между собой специфичные и стандартные методы и права

доступа Windows?
24. Какие отображаемые права доступа определены в Windows?
25. Какие виртуальные права доступа определены в Windows?
26. Какому стандартному методу доступа Windows соответствует не стан-

дартное, а виртуальное право?
27. Какие привилегии субъектов доступа Windows вы знаете?
28. Какие потенциально опасные действия позволяет выполнять пользова-

телю Windows привилегия «Отлаживать программы»?
29. Что такое маркер доступа?
30. Какие основные элементы включает в себя маркер доступа?
31. В какие моменты и каким образом создаются маркеры доступа?
32. Чем отличаются первичные маркеры доступа от маркеров олицетво-

рения?
33. Какая уязвимость ранних версий Windows устранена введением приви-

легии выполнять олицетворение?
34. Какие уровни олицетворения поддерживаются в современных версиях

Windows?
35. Каким образом осуществляется включение и выключение привилегий

в маркере доступа?
36. С какой целью в Windows 2003 введено необратимое удаление приви-

легий из маркера доступа?
37. Что такое ограниченные маркеры доступа?
38. Что такое дескриптор защиты объекта Windows?
39. Какие флаги дескриптора защиты вы знаете?
40. В какой компоненте операционной системы Windows выполняются все

проверки прав доступа субъектов к объектам?
41. Что такое DACL дескриптора защиты?
42. Чем различаются объекты и подобъекты активного каталога Windows?
43. Каков смысл полей GUID1 и GUID2 в ACE объектов активного ка-

талога?
44. Какой алгоритм проверки прав доступа субъектов к объектам реали-

зуется в Windows?
45. Какие особенности имеет проверка прав доступа субъекта к объекту

Windows, если запрашивается виртуальное право MAXIMUM ALLOWED?
46. Как при проверке прав доступа субъекта к объекту Windows осущес-

твляется сравнение запрошенных прав доступа с предоставленными правами
доступа?

Управление доступом 71

47. Как реализуется в Windows назначение дескрипторов защиты создава-
емым объектам?

48. Какие флаги наследования могут устанавливаться в ACE объектов дос-
тупа Windows?

49. Что такое автоматическое наследование атрибутов защиты объектов
Windows?

50. Что такое мандатный контроль целостности?
51. Какие уровни мандатной целостности поддерживаются в Windows 7?
52. Какие особенности имеет выполнение процессов, выполняющихся в

Windows от имени администратора операционной системы на среднем уровне
мандатной целостности?

53. Когда и как определяется уровень мандатной целостности, на котором
выполняется процесс Windows?

54. Для чего в Windows Vista введен UAC?
55. В чем смысл назойливых вопросов, задаваемых пользователю подсис-

темой UAC?
56. Какие основные конфигурации UAC поддерживаются в Windows 7?
57. Что надо делать, если администратор Windows в силу индивидуальных

особенностей психики все время дает положительные ответы на вопросы UAC?
58. Какие элементы изолированной программной среды поддерживаются

в Windows?
59. Как в Windows формулируются правила, устанавливающие правила

изолированной программной среды для конкретных программных модулей?
60. Какие субъекты и объекты доступа поддерживаются в операционных

системах семейства UNIX?
61. Какие методы и права доступа поддерживаются в операционных сис-

темах семейства UNIX?
62. Какие возможности (capabilities) субъектов доступа поддерживаются в

современных версиях UNIX?
63. Какие субъекты доступа могут в современных версиях UNIX модифи-

цировать идентификаторы владельца или группы владельца любого объекта?
64. Какие четыре числовых идентификатора, связанные с безопасностью,

назначаются каждому процессу UNIX?
65. Как в UNIX осуществляется проверка прав доступа субъектов к объ-

ектам?
66. Как работает механизм динамического изменения полномочий SUID/

SGID?
67. Какие средства минимизации полномочий пользователей реализуются

в операционных системах семейства UNIX?
68. Для чего предназначена и как работает команда sudo в UNIX?
69. Какие дополнительные права доступа субъектов к объектам поддержи-

ваются в Mac OS?
70. Почему дополнительные права доступа, поддерживаемые в Mac OS,

так похожи на стандартные и специфичные права доступа, поддерживаемые в
Windows?

3 Аутентификация

3.1. Общие сведения
В защищенной операционной системе любой субъект доступа,

перед тем как начать работу с системой, должен пройти идентифи-
кацию, аутентификацию и авторизацию.

Идентификация субъекта доступа заключается в том, что су-
бъект сообщает системе идентификационную информацию о себе
(имя, учетный номер и т. д.), и таким образом идентифицирует себя.

Аутентификация субъекта доступа заключается в том, что
субъект предоставляет системе помимо идентификационной инфор-
мации еще и аутентификационную информацию, подтверждаю-
щую, что он действительно является тем субъектом доступа, к ко-
торому относится идентификационная информация.

Пусть, например, пользователь, входя в систему, ввел имя и па-
роль. В этом случае имя пользователя является идентификацион-
ной информацией, а известный только ему пароль — аутентифика-
ционной информацией. Вводя пароль, пользователь подтверждает,
что введенное имя принадлежит именно ему.

Авторизация субъекта доступа происходит после успешной
идентификации и аутентификации. При авторизации субъекта опе-
рационная система выполняет действия, необходимые для того, что-
бы субъект мог начать работу в системе — загружает индивидуаль-
ные настройки пользователя, запускает программу-оболочку и т. п.

Авторизация субъекта не относится напрямую к защите опера-
ционной системы. В процессе авторизации решаются чисто техни-
ческие задачи, связанные с организацией начала работы в системе
уже идентифицированного и аутентифицированного субъекта дос-
тупа. Заметим, что в ряде источников, в том числе и в MSDN,
термин «авторизация» употребляется как синоним термина «управ-
ление доступом». Это вносит определенную путаницу в терминоло-
гию в данной области.

С точки зрения обеспечения безопасности компьютерной систе-
мы процедура аутентификации являются весьма ответственной. Ес-
ли нарушитель сумел войти в систему от имени другого пользовате-
ля, тем самым нарушитель легко получает доступ ко всем объектам
системы, к которым имеет доступ данный пользователь. Если при

Аутентификация 73

этом в процессе работы нарушителя с операционной системой под-
система аудита генерирует сообщения о потенциально опасных собы-
тиях, то в журнал аудита будет занесено не имя нарушителя, а имя
пользователя, от имени которого нарушитель работает в системе.

Хотя аутентификация может осуществляться как для физичес-
ких пользователей, так и для псевдопользователей, наибольший ин-
терес с точки зрения обеспечения информационной безопасности
представляет аутентификация физических пользователей. Если в
системе реализуется адекватная политика безопасности, физичес-
кий пользователь просто не может войти в систему от имени псевдо-
пользователя. Если псевдопользователь обладает большими полно-
мочиями, вход нарушителя в систему от имени псевдопользователя
дает нарушителю большие возможности для осуществления несан-
кционированного доступа, однако на практике осуществить такую
атаку обычно крайне трудно. Поэтому в дальнейшем мы будем рас-
сматривать аутентификацию только обычных пользователей.

Обычно подсистема аутентификации операционной системы
строится по одной из трех следующих схем:
• парольная аутентификация;
• аутентификация с использованием внешних носителей инфор-

мации;
• биометрическая аутентификация.

Также возможно использование комбинаций двух или даже всех
трех схем аутентификации в одной системе.

3.1.1. Парольная аутентификация
Данная процедура применяется для идентификации и аутенти-

фикации пользователей в большинстве современных компьютерных
систем. В этом случае для идентификации пользователь должен
ввести свое имя, а для аутентификации ввести пароль — тексто-
вую строку, известную только ему. Имя пользователя, как правило,
назначается ему администратором системы.

Процедура идентификации и аутентификации с использовани-
ем пароля предельно проста. Пользователь вводит с клавиатуры
имя и пароль, операционная система ищет в списке пользователей
запись, относящуюся к данному пользователю, и сравнивает пароль,
хранящийся в списке пользователей, с паролем, введенным пользо-
вателем. Если запись, относящаяся к входящему в систему поль-
зователю, присутствует в списке пользователей и соответствующий
ей пароль совпадает с введенным, считается, что идентификация и
аутентификация прошли успешно и начинается авторизация пользо-
вателя. В противном случае пользователь получает отказ в доступе

74 Г л а в а 3

и не может работать с операционной системой до тех пор, пока он
не будет успешно идентифицирован и аутентифицирован.

Если идентификация и аутентификация пользователя проис-
ходят в процессе входа пользователя на удаленный сервер, имя и
пароль пользователя пересылаются по сети (как правило, в зашиф-
рованном виде).

Для обеспечения надежной защиты операционной системы па-
роль каждого пользователя должен быть известен только этому по-
льзователю и никому другому, в том числе и администраторам сис-
темы. На первый взгляд то, что администратор знает пароль не-
которого пользователя, не отражается негативно на безопасности
системы, поскольку администратор, войдя в систему от имени об-
ычного пользователя, получает права, меньшие, чем те, которые он
получит, зайдя в систему от своего собственного имени. Однако,
входя в систему от имени другого пользователя, администратор по-
лучает возможность обходить систему аудита, а также совершать
действия, компрометирующие данного пользователя, что недопус-
тимо в защищенной системе.

Из вышеизложенного следует, что пароли пользователей не дол-
жны храниться в операционной системе в открытом виде. Поско-
льку администратор системы для выполнения своих обязанностей
должен иметь доступ к списку пользователей (это необходимо, на-
пример, для регистрации новых пользователей), то, если пароли
хранятся там открыто, администратор получает к ним доступ. Тем
самым администратор получает возможность входить в систему от
имени любого зарегистрированного пользователя.

Обычно для шифрования паролей в списке пользователей при-
меняют одну из известных криптографически стойких хеш-фун-
кций — функций, обладающих следующими тремя свойствами:
• сложность вычисления функции h(X) линейно зависит от раз-

мерности входа;
• сложность вычисления обратной функции h−1(Y) экспоненциа-

льно зависит от размерности входа. Другими словами, функция
h однонаправленна (необратима) — самым быстрым способом
вычисления обратной функции является последовательный пе-
ребор всех элементов области определения исходной функции;

• для всех возможных значений Y мощности прообразов h−1(Y)
близки друг к другу. Другими словами, все значения функции
встречаются с примерно одинаковой вероятностью, нет анома-
льных значений, встречающихся много реже или много чаще,
чем другие.

Аутентификация 75

При применении для шифрования паролей криптографически
стойкой хеш-функции в списке пользователей хранится не сам па-
роль X, а образ пароля h(X), являющийся результатом применения
к паролю хеш-функции. Однонаправленность хеш-функции не поз-
воляет восстановить пароль по образу пароля, но позволяет, вычис-
лив хеш-функцию, получить образ введенного пользователем паро-
ля и, сравнив его с эталонным образом пароля, проверить правиль-
ность введенного пароля.

В современных операционных системы чаще всего применяются
функции, специально разработанные для использования в качестве
криптографически стойких хеш-фукнций. Реже встречается ситу-
ация, года криптографически стойкая хеш-функция создается на
основе практически стойкого симметричного криптографического
преобразования следующим образом.

Пусть
Y = F (X,K),

где Y — шифртекст; F — криптографическое преобразование; X —
открытый текст; K — ключ шифрования. Тогда функция

h(X) = F (C,X),

где C — произвольная константа, будет криптографически стойкой
хеш-функцией.

Криптографическая стойкость хеш-функции h(X) следует из
того факта, что для любого практически стойкого симметричного
криптографического преобразования задача восстановления неиз-
вестного ключа по известным открытому и зашифрованному тек-
стам имеет экспоненциальную сложность, а примерно равная мощ-
ность прообразов значений хеш-функции вытекает из требования
отсутствия плохик ключей, предъявляемого к практически стойким
криптографическим преобразованиям.

Хеш-функция, используемая при генерации образов паролей,
обязательно должна быть криптографически стойкой. Дело в том,
что обеспечить хранение образов паролей в тайне от всех пользо-
вателей системы практически невозможно. Администратор опера-
ционной системы, используя свои привилегии, легко сможет про-
читать образы паролей из файла или базы данных, в которой они
хранятся. При сетевой аутентификации пользователя образ пароля
передается по открытым каналам связи и может быть перехвачен
любым монитором сетевого трафика. Если нарушитель, зная зна-
чение хеш-функции (образ пароля пользователя) сможет за прием-
лемое время подобрать аргумент функции, соответствующий этому

76 Г л а в а 3

значению (пароль пользователя или эквивалентный ему пароль), то
тем самым нарушитель сможет полностью преодолеть защиту, реа-
лизуемую подсистемой аутентификации защищаемой системы.

Вышесказанное отнюдь не означает, что образы паролей дол-
жны быть общедоступны. Хранение образов паролей в файле или
базе данных, к которой имеют доступ только системные процессы,
создает дополнительный эшелон защиты, которым не следует пре-
небрегать.

В процедуре генерации образа пароля обязательно должен учас-
твовать маркант — данные, генерируемые случайным образом, не
являющиеся секретом и хранящиеся в открытом виде вместе с об-
разом пароля. Другими словами, вместо h(X) в системе должна
храниться пара (M,h(X,M)). Это необходимо для того, чтобы оди-
наковым паролям разных пользователей соответствовали разные об-
разы. В противном случае нарушитель может осуществить целый
ряд атак, наиболее простая из которых заключается в следующем.

Нарушитель берет какой-либо электронный словарь и для каж-
дого слова из словаря генерирует в точности такую хеш-функцию,
какая применяется в атакуемой системе для генерации образа паро-
ля. Слова и соответствующие им хеш-функции сохраняются в базе
данных. Перехватив образ пароля пользователя, нарушитель ищет
в этой базе слово, соответствующее перехваченному образу пароля.
Это и есть искомый пароль или пароль, эквивалентный искомому.
Вероятность успешного получения пароля по образу может быть
сделана достаточно высокой — для этого нужно всего лишь иметь
достаточно большой словарь. При этом для пополнения словаря на-
рушителю совсем не обязательно иметь доступ к атакуемой системе.
Более того, нарушитель может хранить словарь вне атакуемой сис-
темы, например, на своем домашнем компьютере.

Данная атака может быть реализована только в том случае, ког-
да одинаковым паролям соответствуют одинаковые образы паролей.
Если же при генерации образа пароля используется маркант, опи-
сываемая атака нереализуема.

В последние годы получили распространение искусственно ус-
ложненные хеш-функции, для которых вычисление каждого значе-
ния занимает на современных процессорах несколько миллисекунд
или даже секунд. При проверке пароля это замедление несуществен-
но поскольку хеш-функция вычисляется однократно, но при подбо-
ре пароля нарушителем, когда хеш-функция отдельно вычисляется
при каждом опробовании очередного пароля, искусственное услож-
нение хеш-функции существенно затрудняет подбор.

Аутентификация 77

Если пользователь, входящий в систему, неправильно ввел свое
имя или пароль, система должна выдать ему сообщение об ошибке,
не указывая, какая именно информация некорректна. В противном
случае подбор пароля существенно упрощается.

Для системы парольной аутентификации существуют две ос-
новные угрозы — компрометация пароля и подбор пароля.

Для обеспечения надежной защиты от компрометации паро-
лей подсистема защиты должна удовлетворять следующим требова-
ниям:
• пароль, вводимый пользователем, не отображается на экране

компьютера;
• ввод пароля из командной строки недопустим.

Кроме того, пользователи должны быть проинструктированы о:
• необходимости хранения пароля в тайне от других пользовате-

лей, включая администраторов системы;
• необходимости немедленной смены пароля после его компроме-

тации;
• необходимости регулярной смены пароля;
• недопустимости записи пароля на бумагу или в файл (кроме

случаев, когда угроза компрометации пароля неактуальна, на-
пример, если речь идет о доступе пользователя в Интернет с
домашнего компьютера).
Что касается подбора паролей, прежде чем перейти к описанию

средств защиты от этой угрозы, сначала рассмотрим более подробно
методы подбора паролей.

В научно-популярной литературе под подбором паролей обычно
понимается ситуация, когда нарушитель опробует варианты пароля
непосредственно в той системе, к которой он пытается осуществить
несанкционированный доступ. Однако на практике такие попытки
подбора паролей применяются крайне редко в силу недостаточной
эффективности — простейшие защитные меры наподобие оповеще-
ния администратора о нескольких последовательных неудачных по-
пытках аутентификации одного и того же пользователя даже в слу-
чае успешного подбора пароля нарушителем затрудняют использо-
вание подобранного пароля в течение сколько-нибудь длительного
времени. В тех случаях, когда пароль подбирается для однократ-
ного доступа к атакуемой системе (например, с целью внедрения
программной закладки путем эксплуатации уязвимости, позволя-
ющей несанкционированно повысить полномочия пользователя) и
когда есть основания предполагать, что пароль пользователя легко-

78 Г л а в а 3

подбираем, данный метод может приводить к успеху. Но подобные
ситуации являются скорее исключением, чем правилом.

Гораздо чаще применяется так называемый оффлайн-подбор,
осуществляемый вне атакуемой системы. В этом случае нарушитель
должен предварительно получить из атакуемой системы хеш-образы
подбираемых паролей. Это может сделать следующими способами:
• непосредственно извлечь хеш-образы паролей из защищенного

хранилища, получив кратковременный административный дос-
туп к атакуемой системе либо загрузив на атакуемой компью-
тере собственную операционную систему с внешнего носителя
информации;

• извлечь хеш-образы паролей из перехваченных сетевых пакетов,
в которых они передаются в ходе удаленной аутентификации
или смены пароля. Заметим, что в случае применения совре-
менных протоколов передачи паролей по сети данный метод,
как правило, малоэффективен.
Далее в настоящем разделе мы будем рассматривать только

оффлайн-подбор паролей.
При оффлайн-подборе паролей применяются следующие ме-

тоды.
Тотальный перебор. В этом случае злоумышленник последо-

вательно опробует все возможные варианты пароля. Если пароль
длиннее шести-восьми символов, метод малоэффективен.

Как правило, в практических реализациях данного метода учи-
тывается тот факт, что разные символы встречаются в паролях
пользователей с разной вероятностью. Например, вероятность то-
го, что в пароле пользователя встретится буква «а», гораздо выше
вероятности того, что в пароле встретится символ «^». Согласно
различным исследованиям, статистика встречаемости символов в
алфавите паролей близка к статистике встречаемости символов в
естественном языке.

В ходе тотального перебора паролей нарушитель обычно вна-
чале опробует пароли, состоящие из наиболее часто встречающих-
ся символов, за счет чего время перебора существенно сокращается.
Иногда при подборе паролей используется не только статистика вст-
речаемости символов, но также статистика встречаемости биграмм
и триграмм — комбинаций двух и трех последовательных символов
соответственно.

Для подбора паролей с использованием данного метода в разное
время было написано множество программ. Среднее время подбора

Аутентификация 79

пароля из 6–8 символов, не включающего ни цифр, ни знаков пре-
пинания, варьируется от нескольких десятков секунд до нескольких
суток в зависимости от вычислительной мощности компьютера, на
котором осуществляется подбор, и эффективности реализации алго-
ритма генерации хеш-функции в программе, подбирающей пароли.

Подбор пароля по словарю. Пароли пользователей часто
представляют собой слова английского или русского языка. Поско-
льку пользователю гораздо легче запомнить осмысленное слово, чем
бессмысленную последовательность символов, пользователи пред-
почитают использовать в качестве паролей осмысленные слова. При
этом количество возможных вариантов пароля сравнительно неве-
лико. Например, английский язык содержит всего около 100 000
слов (не считая научных, технических, медицинских и других тер-
минов), что в 6,5 раз меньше количества всех комбинаций из чет-
ырех английских букв.

При использовании описываемого метода подбора паролей на-
рушитель вначале опробует в качестве паролей все слова из слова-
ря, содержащего наиболее вероятные пароли. Такой словарь нару-
шитель может составить сам, а может взять, например, в Internet,
где имеется огромное количество подобных словарей, адаптирован-
ных для различных стран мира и различных субкультур. Сущес-
твуют, например, словари паролей толкиенистов, словари паролей,
набранных русскими буквами в латинской раскладке клавиатуры
(наподобие «gfhjkm»), и т. п. Если подбираемый пароль отсутствует
в словаре, нарушиьель опробует всевозможные комбинации слов из
словаря, слова из словаря с добавленными к началу и/или к концу
одной или несколькими буквами, цифрами и знаками препинания
и т. д.

Обычно данный метод применяется в комбинации с предыду-
щим.

Подбор пароля с использованием знаний о пользовате-
ле. Выше уже говорилось, что пользователи стараются использо-
вать легкозапоминаемые пароли. Многие пользователи, чтобы не
забыть пароль, выбирают в качестве пароля свое имя, фамилию,
дату рождения, номер телефона, номер автомобиля и т. д. В этом
случае, если нарушитель хорошо знает пользователя, ему может
потребоваться всего лишь 10–20 опробований.

Подбор образа пароля. Если подсистема аутентификации
атакуемой системы устроена так, что образ пароля существенно ко-
роче самого пароля, нарушитель может подбирать не сам пароль, а
его образ. Однако в этом случае нарушитель, подобрав образ паро-

80 Г л а в а 3

ля, должен получить сам пароль, соответствующий подобранному
образу, а это возможно только в том случае, если хеш-функция,
применяемая в системе, не обладает достаточной стойкостью.

Пожалуй, самой известной программой подбора паролей явля-
ется John the Ripper. Эта программа изначально разработана для
взлома UNIX-систем, но в дальнейшем в нее были внесены функции
подбора паролей для Windows. Программа свободно распростра-
няется вместе с исходным текстом, загрузить программу можно с
сайта http://www.openwall.com/john/

Список паролей, поставляемый вместе с программой, включает
в себя 3546 строк (версия 1.7.9 от 17.12.2011), это простой текстовый
файл, пользователь программы может дописывать в него другие
варианты паролей, которые он считает вероятными. Первая десятка
самых вероятных паролей, по мнению разработчиков программы,
имеет вид:

1. 123456
2. 12345
3. password
4. password1
5. 123456789
6. 12345678
7. 1234567890
8. abc123
9. computer
10. tigger
Интересно, что пустой пароль присутствует в списке лишь на

двадцать втором месте.
Правила перебора паролей, используемые John the Ripper, бе-

рутся из текстового файла конфигурации, каждая строка этого фай-
ла соответствует одному правилу. Пользователь программы может
менять заданные по умолчанию правила перебора паролей, добав-
лять свои правила, удалять правила, менять порядок применения
правил (чем ближе строка к началу списка, тем раньше применяет-
ся данное правило). Если алгоритм хеширования, применяемый в
атакуемой системе, имеет известные слабости (не различаются заг-
лавные и строчные буквы, хеш-образ состоит из нескольких фраг-
ментов, вычисляемых независимо один от другого и т. п.), John the
Ripper позволяет описать особые правила для таких случаев.

Существует целый ряд методов, позволяющих несколько уме-
ньшить угрозу компрометации и подбора паролей пользователей.
Рассмотрим наиболее распространенные из этих методов.

Аутентификация 81

Ограничение срока действия пароля. При применении дан-
ного метода каждый пользователь защищаемой системы обязан ме-
нять пароль через определенные промежутки времени. Максималь-
ный срок действия пароля целесообразно ограничить 1-3 месяцами.
Менее сильные ограничения не дают желаемого эффекта, а при ис-
пользовании более сильных ограничений резко повышается вероят-
ность того, что пользователь забудет свой пароль. После того, как
срок действия пароля истек, пользователь должен сменить свой па-
роль в течение некоторого времени (обычно не более суток) после
первого входа в систему по истечении этого срока. Если пользова-
тель не сменил пароль за отведенное время, операционная система
запрещает ему входить в систему до тех пор, пока это явно не раз-
решит администратор системы.

Срок действия пароля желательно ограничивать не только
сверху, но и снизу. В противном случае пользователь, сменив па-
роль, может немедленно вернуться к старому паролю, сменив па-
роль еще один раз.

Также целесообразно проверять при каждой смене пароля уни-
кальность нового пароля. Для этого система должна хранить не
только хеш-образ текущего пароля пользователя, но и хеш-образы
последних 10–20 паролей, им применявшихся.

Ограничения на пароль. Данный метод заключается в том,
что пользователь может выбрать себе в качестве пароля не произ-
вольную строку символов, а только строку, удовлетворяющую оп-
ределенным условиям. Обычно используются следующие условия:
• длина пароля не должна быть меньше некоторого количества

символов. В литературе и в документации по операционным
системам обычно рекомендуется запрещать использование па-
ролей короче 6–8 символов, но, с учетом быстрого прогресса
вычислительной техники, в настоящее время целесообразно ог-
раничивать длину паролей 10–14 символами;

• в пароль должно входить по меньшей мере 5–7 различных сим-
волов;

• в пароль должны входить как строчные, так и заглавные буквы;
• пароль пользователя не должен совпадать с его именем;
• пароль не должен присутствовать в списке «плохих» паролей,

хранимом в системе.
Как правило, администраторы могут варьировать эти ограни-

чения как в пределах всей системы, так и для отдельных пользо-
вателей. Например, если какое-то имя пользователя используется

82 Г л а в а 3

для гостевого входа, устанавливать ограничения на используемый
пароль нецелесообразно.

При выборе ограничений на пароли не следует забывать, что
введение чрезмерно жестких ограничений на пароли приводит к то-
му, что пользователи начинают массово забывать свои пароли.

Блокировка терминала. При использовании данного мето-
да, если пользователь несколько раз подряд ошибся при вводе име-
ни и пароля, терминал, с которого пользователь входит в систему,
блокируется и пользователь не может продолжать дальнейшие по-
пытки входа в систему. Параметрами метода являются следующие
значения:
• максимально допустимое количество неудачных попыток входа

в систему с одного терминала;
• интервал времени, после которого счетчик неудачных попыток

входа обнуляется;
• продолжительность блокировки терминала (как правило, мо-

жет быть сделана неограниченной, в этом случае блокировка
терминала может снять только администратор системы).
Блокировка учетной записи пользователя. Данный метод

отличается от предыдущего только тем, что блокируется не терми-
нал, с которого пользователь входит в систему, а учетная запись
пользователя.

Ограничения на режимы входа в систему пользовате-
лей, пользующихся плохими паролями. В некоторых опера-
ционных системах пользователь, назначивший себе явно плохой па-
роль (например, пустой), может работать в системой только с лока-
льной консоли, но не через сеть.

Генерация паролей системой. В этом случае пользователи
не могут самостоятельно придумывать себе пароли — это делает за
них сама операционная система. Когда пользователю нужно сме-
нить пароль, он вводит соответствующую команду и получает от
системы новый пароль. Если предложенный вариант пароля не ус-
траивает пользователя, он может потребовать другой вариант. Ос-
новным преимуществом данного метода является то, что система ге-
нерирует пароли случайным образом, подобрать такой пароль прак-
тически невозможно. С другой стороны, такие пароли обычно очень
трудны для запоминания, это вынуждает пользователей записывать
их на бумаге. Если создание текстовой копии паролей не является
угрозой безопасности операционной системы (например, если поль-
зователь входит в систему только через Internet со своего домашнего

Аутентификация 83

компьютера), данная модель аутентификации близка к идеальной.
В противном случае применять ее нецелесообразно.

Некоторые из перечисленных методов могут применяться в со-
вокупности.

Если предположить, что в качестве пароля равновероятно вы-
бирается любая последовательность букв латинского или русского
алфавита, то при длине пароля в 8 или 10 знаков общее число вари-
антов ключей будет равняться для латинского алфавита соответст-
венно 268 = 2 ·1011 и 2610 = 1,4 ·1014, а для русского — 328 = 1,1 ·1012

и 3210 = 1,1 · 1015. Для того чтобы выработать ключ, обеспечива-
ющий стойкость на уровне стойкости стандарта шифрования DES,
понадобится использовать в пароле не менее 11–12 букв алфавита, а
для обеспечения стойкости на уровне российского стандарта ГОСТ
28147-89 — не менее 55–56 букв латинского алфавита и соответствен-
но 51–52 русского алфавита. Придумать и запомнить такой пароль
типичному пользователю практически невозможно.

На практике максимальная стойкость парольной защиты в пер-
вую очередь определяется способностью пользователя запоминать
длинные бессмысленные последовательности символов текста. Ес-
ли предполагается, что пользователи запоминают свои пароли, не
записывая их на внешние носители, и что долговременная память
пользователей не обладает никакими необычными особенностями,
то максимально достижимая криптографическая стойкость пароль-
ной защиты составляет не более 109...1012 опробований. На совре-
менной вычислительной техники перебор такого объема паролей яв-
ляется вполне реальной задачей. Фактически, любой пароль, кото-
рый может удержать в памяти средний человек, может быть подоб-
ран квалифицированным и обеспеченным техникой нарушителем за
приемлемое для него время. В связи с этим, парольная защита в нас-
тоящее время применяется лишь в тех системах, для которых дейс-
твующая модель нарушителя исключает из рассмотрения высокок-
валифицированных и высокомотивированных нарушителей. Дру-
гими словами, парольная аутентификация может рассматриваться
как эффективная защитная мера для тех систем, для которых акту-
альны угрозы со стороны только лишь малоквалифицированных и
недостаточно мотивированных нарушителей. Однако поскольку по-
давляющее большинство современных компьютерных систем имен-
но таковы, парольная аутентификация применяется очень широко
и фактически является как системой аутентификации по умолча-
нию во всех распространенных современных операционных систе-
мах. В обозримом будущем эта ситуация вряд ли изменится.

84 Г л а в а 3

Если в системе действует парольная аутентификация, задача
выбора стойкого пароля, как правило, возлагается на самого поль-
зователя. Эта задача весьма непроста. Наблюдается четкая законо-
мерность — чем проще пользователю запомнить пароль, тем быстрее
этот пароль подбирается программами, подобными John the Ripper.
Человеческая память устроена так, что запоминать последователь-
ности символов, являющиеся простыми функциями от осмысленных
слов, гораздо проще, чем бессмысленные последовательности сим-
волов, которые трудно даже произнести вслух. Например, пароль
«baraban2012» запомнить гораздо проще, чем пароль «;F34 iUvSI5».
Однако первый из приведенных паролей подбирается практически
мгновенно, в то время как подбор второго пароля требует от вычис-
лительной системы нарушителя существенных затрат процессорно-
го времени. Но если пользователь выбрал себе настолько сложный
пароль, что сам не может его запомнить, пользователь вынужден
записывать его на бумагу или иной внешний носитель информации,
что существенно повышает риск компрометации пароля. Очевидно,
весьма актуальной является задача построения метода генерации
пароля, который, с одной стороны, был бы прост для запоминания,
и, с другой стороны, обеспечивал бы приемлемую стойкость паро-
льной защиты.

В разное время предлагалось множество методов генерации па-
ролей, позволяющих добиться соблюдения вышеприведенных требо-
ваний, хотя и с большой натяжкой. Приведем несколько примеров:
• составлять пароль из двух или трех осмысленных слов, разде-

ленных случайно выбранными знаками препинания (например,
«elves!trance&beside»);

• придумывать пароль на основе географического названия, от-
носящегося к стране, в которой статистика естественного языка
сильно отличается как от русского, так и английского языка (на-
пример, «e/1rbIrbItrbIH», на основе названия чукотского озера
Эльгыгытгын);

• вместо географического названия можно использовать запоми-
нающиеся слова из фантастических книг (например, rhabaar
drobdt — гномье ругательство из романа Перумова) или с этике-
ток распространенных товаров (например, дандырылган туз —
сухое обезжиренное молоко по-казахски);

• вводить пароль в латинской раскладке клавиатуры, глядя на
буквы, соответствующие этим клавишам в русской раскладке
(например, «gfhjkm»);

Аутентификация 85

• запомнить несколько строк стихотворения или песни и соста-
вить пароль из первых букв каждого слова (например, «IfaqIfaf-
Iesaomcswswsfw»).
К сожалению, эффективность подобных методов оставляет же-

лать лучшего. Как только тот или иной метод придумывания па-
ролей становится более-менее популярным, немедленно появляются
специализированные словари, ориентированные на подбор паролей,
сгенерированных с использованием данного метода, и дальнейшее
его применение становится нецелесообразным.

3.1.2. Аутентификация с использованием внешних
носителей информации

При использовании данной схемы аутентификации аутентифи-
кационная информация хранится на внешнем носителе информа-
ции, который может представлять собой пластиковую карту, таб-
летку touch memory, электронный ключ и т. п. При входе в систему
пользователь подключает к компьютеру этот носитель, и система
считывает с него идентификационную и аутентификационную ин-
формацию пользователя. Далее аутентификация осуществляется,
как было описано выше.

Поскольку аутентификационный ключ, хранящийся на внеш-
нем носителе, может быть сделан гораздо более длинным, чем па-
роль, подобрать такой ключ практически невозможно. Однако уг-
роза компрометации аутентификационных данных по-прежнему ос-
тается актуальной. Если процедура аутентификации не предусмат-
ривает дополнительных мер защиты, любой обладатель носителя
аутентификационной информации, в том числе нарушитель, украв-
ший носитель у легального пользователя системы, может войти в
систему с правами пользователя, которому принадлежит этот но-
ситель.

Описываемый механизм аутентификации, как правило, исполь-
зуется в совокупности с предыдущим. При этом пользователь, вхо-
дя в систему, должен не только предъявить компьютеру носитель
аутентификационных данных, но и ввести соответствующий этому
носителю пароль (например, числовой пин-код). Формат хранения
аутентификационной информации на носителе не должен позволять
воспользоваться этой информацией случайному обладателю данно-
го носителя.

Основной угрозой при использовании описываемого механизма
аутентификации является угроза кражи носителя аутентификаци-
онных данных с последующим его копированием и подбором пароля

86 Г л а в а 3

на доступ к ключу. Если аутентификационные данные выбираются
случайно и формат их хранения на носителе не содержит прове-
рочных полей (контрольных сумм и т. д.), оффлайн-подбор пароля
на доступ к носителю аутентификационных данных невозможен —
нарушитель просто не сможет сформулировать критерий, позволя-
ющий отличать правильно расшифрованные аутентификационные
данные от неправильно расшифрованных, и, следовательно, прави-
льный пароль от неправильного.

Во многих реализациях аутентификации с использованием
внешних носителей применяются следующие дополнительные меры
защиты:
• защита ключевого носителя от копирования;
• блокировка или уничтожение аутентификационной информа-

ции после определенного количества неудачных попыток ввода
пароля на доступ к ключу.
При технически грамотной реализации механизма хранения ау-

тентификационных данных эти меры никак не влияют на стойкость
реализуемой системы аутентификации, но они существенно повыша-
ют привлекательность данной системы для потенциальных заказчи-
ков и потому применяются очень широко.

Если в качестве носителя ключевой информации применяются
электронные ключи Touch Memory или пластиковые карты Memory
Card, перечисленные меры защиты неприменимы. Хотя сущест-
вующие средства защиты от копирования и позволяют несколько
затруднить копирование носителя информации, любой из перечис-
ленных носителей может быть скопирован за считанные минуты.
Поскольку проверку правильности пароля на доступ к ключу осу-
ществляет защищаемая операционная система, то, если нарушитель
подбирает пароль с помощью специальной программы, подсчиты-
вать количество неудачных попыток также невозможно.

В отличие от перечисленных носителей информации, интеллек-
туальные пластиковые карты Smart Card содержат, помимо энерго-
независимой оперативной памяти, микропроцессор, способный вы-
полнять криптографические преобразования информации. Поэтому
интеллектуальные карты способны самостоятельно проверять пра-
вильность пароля на доступ к ключевой информации, и при аутен-
тификации пользователя с использованием интеллектуальной кар-
ты проверку пароля на доступ к карте производит не операционная
система, а сама карта. Интеллектуальная карта может быть запрог-
раммирована на стирание хранимой информации после превышения
максимально допустимого количества неправильных попыток ввода

Аутентификация 87

пароля, что не позволяет подбирать этот пароль без частого копи-
рования карты, что весьма дорого.

В целом использование для аутентификации пользователей не
только паролей, но еще и внешних носителей информации позво-
ляет заметно повысить защищенность операционной системы. Но,
с другой стороны, при использовании в защищаемой системе ау-
тентификации с использованием внешних носителей информации у
администраторов и пользователей возникает целый ряд проблем.

Проблема генерации ключей
Ключ аутентификации должен быть достаточно длинным и аб-

солютно случайным. Генераторы псевдослучайных последователь-
ностей не могут применяться для генерации ключей аутентифика-
ции, поскольку все современные генераторы псевдослучайных пос-
ледовательностей работают по линейной конгруэнтной схеме:

rn+1 = arn + b(modm),

где r0, r1, . . . — генерируемая псевдослучайная последовательность;
a, b, m — параметры алгоритма.

Обычно m выбирается равным максимальному целому числу
для данной аппаратной платформы, a и b — специально подобран-
ные числа, обычно простые. Как правило, a и b выбираются из
списков «хороших» a и b, приведенных в знаменитой монографии
Кнута [5].

Нетрудно видеть, что значение каждого следующего члена псев-
дослучайной последовательности однозначно определяется значени-
ем ее предыдущего члена и, следовательно, количество разных псев-
дослучайных последовательностей, которые способен выдать гене-
ратор, в точности совпадает с количеством возможных начальных
заполнений линейной рекурренты. Другими словами, стойкость за-
щиты, реализуемой с использованием данного ключа, не зависит от
того, сколько членов псевдослучайной последовательности входит в
состав ключа, и всегда равна m. Обычно m выбирается равным 232

или 264, что в современных условиях явно недостаточно.
В некоторых программах генерации ключей в качестве случай-

ных данных берется содержимое случайных областей оперативной
памяти, точное значение текущего времени, статистическая инфор-
мация о функционировании системы в данный момент (например,
количество байт, прочитанных каждым процессом за последний час)
и т. д. Однако статистические эксперименты показывают, что все эти
величины далеко не случайны и распределение ключей, генерируе-
мых с их помощью, далеко от дискретного равномерного.

88 Г л а в а 3

Идеальным средством генерации истинно случайных ключей
является аппаратный генератор случайных чисел. Это устройство
может быть сделано довольно простым, однако на сегодняшний де-
нь оно пока не находит широкого применения. Имеющиеся реализа-
ции, даже разработанные крупными компаниями, имеют кустарный
или полукустарный характер, качество выдаваемых ими случайных
последовательностей не всегда подвергается достаточно подробно-
му анализу. При использовании аппаратных генераторов случай-
ных чисел следует иметь в виду, что последовательность, выдавае-
мая генератором, должна обязательно проверяться статистически-
ми критериями, например, описанными в вышеупомянутой моногра-
фии Кнута. Известны случаи, когда генераторы случайных ключей
из-за неисправности или необычных условий эксплуатации (напри-
мер, при очень низкой температуре) выдавали последовательности,
далекие от случайных (например, последовательность, составлен-
ная из одних нулей) и эти последовательности, не будучи прове-
рены, реально использовались в качестве ключей аутентификации.
Для примера приведем так называемую «батарею Кнута» — четыре
теста, которые наиболее часто используются для оценки качества
случайных последовательностей, имеющих дискретное равномерное
распределение.

1. Вероятность встретить на i-м месте последовательности зна-
чение x должна быть одинакова для всех i и x.

2. Вероятность встретить на i-м и (i + 1)-м местах последова-
тельности пару значений (x1, x2) должна быть одинакова для всех
i, x1 и x2.

3. Усеченный покер-тест. Вероятности встретить в случайно
выбранной четверке подряд идущих членов случайной последовате-
льности все нижеперечисленные наборы комбинаций значений:
• четыре разных значения;
• одну пару одинаковых значений;
• две разные пары попарно одинаковых значений;
• три одинаковых значения и четвертое значение, отличное от

этих трех;
• все четыре одинаковые значения,

должны соответствовать полиномиальной схеме независимых испы-
таний с соответствующими параметрами.

4. Вероятность встретить в любом месте анализируемой после-
довательности монотонно возрастающий (убывающий) участок дли-
ны n должна быть равна 2−n.

Аутентификация 89

При отсутствии в системе аппаратного генератора случайных
чисел для генерации ключей аутентификации можно воспользовать-
ся одним из двух методов, дающих удовлетворительные результаты:

1. Метод обезьяны — пользователю предлагается набрать на
клавиатуре произвольный текст, который в дальнейшем рассматри-
вается как случайная последовательность. Иногда этот метод до-
полняется требованием пользователю подвигать мышью произволь-
ным образом. Распределение данных, полученных от пользователя
при использовании данного метода, далеко от равномерного, слу-
чайность этих данных также оставляет желать лучшего. Поэтому
в практических реализациях, данные, полученные от пользовате-
ля, предварительно прогоняются через функцию усложнения, на-
пример, симметричное криптографическое преобразование с обрат-
ной связью, которое несколько повышает качество ключа. Хорошей
практикой при применении метода обезьяны является выбор вдвое
большей длины ключа, чем необходимо для обеспечения требуемой
стойкости. Это дает запас стойкости, компенсирующий недостаточ-
ное качество ключей. Метод обезьяны используется в большинстве
современных программных генераторов ключей;

2. Метод тетриса — пользователю предлагается поиграть в
компьютерную игру, в которой нужно регулярно нажимать на кла-
виши, при этом распределение интервалов времени между нажатия-
ми на клавиши хорошо поддается аналитическому моделированию.
Практически идеальным вариантом является игра «Тетрис». Поль-
зователь играет в компьютерную игру, система фиксирует интер-
валы между нажатиями клавиш и проводит преобразование, при-
водящее распределение случайной величины к дискретному равно-
мерному. Для генерации ключа обычно требуется около пяти ми-
нут. Данный метод позволяет генерировать ключи гораздо более
высокого качества, чем метод обезьяны, но требует заметно боль-
ше времени для генерации одного ключа. Поэтому данный метод в
настоящее время применяется редко.

При тестировании программного генератора ключа, построен-
ного по одной из двух вышеописанных схем, желательно участие
в экспериментах нескольких операторов разного пола и возраста,
обладающих разным уровнем навыков работы с компьютером. Обя-
зательным является участие в эксперименте оператора-нарушителя,
сознательно стремящегося заставить генератор вырабатывать пло-
хие ключи.

Если необходимо одномоментно сгенерировать несколько десят-
ков или сотен ключей, могут применяться так называемые алгорит-

90 Г л а в а 3

мы размножения ключей. На вход такого алгоритма поступает один
ключ, а на выходе выдается N ключей, обладающих следующим
свойством: если известно N −1 ключей, задача восстановления пос-
леднего N -го ключа не может быть решена быстрее, чем полным
перебором всех возможных вариантов ключа. Естественно, если на-
рушитель знает первый ключ, поступивший на вход алгоритма, на-
рушитель легко сможет восстановить все N сгенерированных клю-
чей. Поэтому по окончании процедуры генерации ключей первый
ключ обязательно уничтожается.

Проблема рассылки ключей. Если защищаемая сеть явля-
ется территориально распределенной, задача рассылки ключей из
центрального офиса организации в территориальные подразделения
решается весьма неочевидно. Руководителю службы безопасности
организации приходится делать нелегкий выбор между двумя ос-
новными вариантами:
• разрешить каждому подразделению генерировать ключи самос-

тоятельно, при этом центру трудно контролировать качество
вырабатываемых ключей и отслеживать возможные организа-
ционные нарушения в ходе генерации ключей. Кроме того,
в каждом подразделении организации приходится иметь свой
комплект оборудования для прошивки аппаратных носителей
информации;

• генерировать ключи централизованно и доставлять в региона-
льные подраздлеления курьерами, при этом возрастают расхо-
ды на командировки сотрудников службы безопасности.
Между этими двумя крайностями возможны промежуточные

варианты, например, генерировать ключи централизованно, рассы-
лать их в подразделения по защищенным каналам связи, а непос-
редственно прошивку носителей проводить уже на местах. Однако
среди всех возможных вариантов нет ни одного однозначно лучшего,
каждый вариант имеет свои недостатки.

Проблема смены ключей. Так же, как и пароли, ключи
аутентификации время от времени должны подвергаться смене. Ес-
ли ключи генерируются централизованно и количество ключей в
организации достаточно велико, в деятельности службы безопасно-
сти время от времени происходят авралы, когда в течение корот-
кого времени необходимо сгенерировать большое количество новых
ключей. Еще тяжелее переносится ситуация, когда массовая сме-
на ключей происходит незапланированно, при обнаружении факта
массовой компрометации ключей в результате успешного взлома за-
щищаемой сети. Помимо «естественных» авральных работ по лик-

Аутентификация 91

видации уязвимостей защиты и локализации последствий ее взлома,
на службу безопасности в этом случае возлагается дополнительная
задача по срочной генерации полного набора ключей для всех поль-
зователей организации и рассылке новых ключей в подразделения.

Проблема потерянных ключей. Пользователи, пользующи-
еся внешними носителями аутентификационных ключей, время от
времени теряют эти носители. Пользователь, потерявший носитель
с ключом, не может работать с компьютерными системами, при этом
потеря ключа часто обнаруживается в момент, когда доступ данно-
го пользователя в компьютерную сеть должен быть обеспечен неза-
медлительно. Поэтому в организации должна быть предусмотрена
процедура быстрой внеплановой смены пользовательского ключа.
Если ключи генерируются централизованно, в каждом подразделе-
нии должен иметься запас ключей для экстренной замены, должны
быть предусмотрены механизмы блокирования потерянных ключей,
не допускающие их использование нарушителями.

В целом аутентификация на основе внешних носителей ключа
не является идеальной схемой аутентификации. Хотя данная схе-
ма может быть сделана гораздо более стойкой, чем парольная, обо-
ротной стороной высокой стойкости являются проблемы, встающие
перед администраторами при практической реализации политики
безопасности, основанной на данной схеме аутентификации.

3.1.3. Биометрическая аутентификация

Каждый человек обладает своим неповторимым набором био-
метрических характеристик, к которым относятся отпечатки паль-
цев, рисунок сетчатки, рукописный и клавиатурный почерк и т. д.
Эти характеристики могут быть использованы для аутентификации
пользователя.

Если аутентификация пользователя осуществляется на основе
биометрических характеристик, угрозы компрометации и подбора
аутентификационных данных перестают быть актуальными — под-
делать биометрические характеристики человека, как правило, нас-
только сложно и дорого, что затраты злоумышленника на проник-
новение в защищенную систему превысят выгоды от такого проник-
новения. Таким образом, механизм аутентификации пользователя
на основе биометрических характеристик создает практически не-
преодолимую защиту на этапе аутентификации.

С другой стороны, практическая реализация данного механиз-
ма аутентификации неизбежно создает ряд проблем, к основным из
которых относятся следующие:

92 Г л а в а 3

• поскольку псевдопользователи не являются людьми, и, следова-
тельно, не имеют биометрических характеристик, для их аутен-
тификации должен поддерживаться альтернативный механизм.
При этом система должна гарантировать, что этот альтерна-
тивный механизм не будет применяться для аутентификации
обычных пользователей;

• при двух последовательных входах в систему одного и того же
человека его биометрические характеристики никогда в точнос-
ти не совпадают. Поэтому в процессе аутентификации прихо-
дится использовать математический аппарат теории распозна-
вания образов, при этом приходится мириться с неизбежностью
ошибок как первого рода (успешный вход от чужого имени), так
и второго рода (отказ в доступе легальному пользователю);

• большинство биометрических характеристик человека посте-
пенно меняются со временем, что заставляет регулярно коррек-
тировать эталонный образ аутентифицирующей информации;

• биометрические характеристики человека могут испытывать
резкие кратковременные изменения. Например, если пользова-
тель оцарапал палец, система аутентификации, основанная на
отпечатках пальцев, не сможет его аутентифицировать до тех
пор, пока царапина не заживет;

• аутентификация пользователя на основе биометрических харак-
теристик требует применения дорогостоящей аппаратуры для
получения образа используемой характеристики и сложных вы-
числительных алгоритмов для сравнения этого образа с эталон-
ным, что приводит к большим затратам финансовых средств на
создание системы аутентификации и вычислительных ресурсов
компьютера на ее поддержание.
Десять лет назад перечисленные недостатки делали биометри-

ческую аутентификацию крайне неудобной для практического испо-
льзования. Сейчас в данной области наблюдается большой прогресс
и, вероятно, в ближайшее время, по мере повышения надежности
и снижения стоимости устройств биометрической аутентификации,
доля биометрических систем среди всех систем аутентификации за-
метно вырастет.

3.2. Аутентификация в UNIX
Список пользователей UNIX хранится в текстовом файле /etc/

passwd, формат которого допускает его редактирование обычным
текстовым редактором. В старых версиях UNIX зашифрованные

Аутентификация 93

образы паролей хранились в том же файле, в большинстве совре-
менных UNIX-систем образы паролей хранятся в отдельном файле,
также расположенном в каталоге /etc. Имя этого файла различает-
ся в разных версиях UNIX, чаще всего применяется имя /etc/shadow.
В некоторых UNIX-системах пароль каждого пользователя хранится
в своем отдельном файле, например, в ALT Linux пароль пользова-
теля username хранится в файле /etc/tcb/username/shadow.

Каждая строка файла /etc/passwd соответствует одному поль-
зователю или псевдопользователю. Она включает в себя следующие
семь полей, разделенных двоеточиями:
• имя пользователя (login);
• хеш-образ пароля пользователя или признак того, что хеш-об-

раз пароля хранится в другом файле, общем для всех пользо-
вателей (*) или признак того, что хеш-образ пароля хранится
в отдельном файле (x);

• UID пользователя;
• GID первичной группы пользователя;
• комментарий к учетной записи пользователя (произвольная

текстовая строка);
• домашняя директория пользователя;
• командный интерпретатор, который должен запускаться на тер-

миналах, на которых работает данный пользователь (для псев-
допользователей обычно указывается /dev/null).
Например:

root:x:0:0:System Administrator:/root:/bin/bash

bin:x:1:1:bin:/:/dev/null

...

mpd:x:117:431:Music Player Daemon (MPD):/var/lib/mpd:/dev/null

user:500:500:user:/home/user:/bin/bash

Управление списком пользователей, как правило, осуществля-
ется не путем ручного редактирования соответствующих файлов, а
с использованием специальных утилит командной строки useradd,
userdel, usermod, groupadd, groupdel, groupmod либо графических
утилит, оснасток панели управления и т. п.

Начиная со второй половины 1990-х годов, в подавляющем бо-
льшинстве UNIX-систем подсистема аутентификации строится в со-
ответствии с архитектурой Pluggable Authentication Module (PAM),
разработанной Open Software Foundation (OSF). Программные моду-
ли, входящие в подсистему аутентификации UNIX-системы, делятся
на две основные группы:
• клиенты (приложения и демоны), пользующиеся услугами PAM

(login, passwd, rlogin, telnetd, ftpd и т. п.);

94 Г л а в а 3

• программные модули, предоставляющие услуги PAM. Обычно
эти модули представляют собой библиотеки, размещаемые в ди-
ректории /lib/security.
С точки зрения клиента аутентификации его взаимодействие с

PAM реализуется посредством так называемых примитивов — сис-
темных вызовов, передающих управление соответствующим моду-
лям PAM. Поддерживаются шесть основных примитивов, сгруппи-
рованных в четыре подсистемы:
• pam authenticate (подсистема auth) — аутентифицировать по-

льзователя;
• pam setcred (подсистема auth) — авторизовать пользователя (ус-

тановить UID, идентификаторы групп, квоты ресурсов и т. д.);
• pam acct mgmt (подсистема account) — проверить, доступна ли

учетная запись пользователя для авторизации (не устарел ли
пароль, не заблокирована ли учетная запись и т. п.);

• pam open session (подсистема session) — начать сеанс работы по-
льзователя с операционной системой;

• pam close session (подсистема session) — завершить сеанс работы
пользователя с операционной системой;

• pam chauthtok (подсистема password) — назначить пользовате-
лю новые аутентификационные данные.
Клиентские программы, обращающиеся к PAM, могут не знать

о том, какой метод был использован при аутентификации некоторо-
го конкретного пользователя. Вся техническая реализация проце-
дуры аутентификации пользователя инкапсулирована внутри PAM,
клиенту выдается лишь самая общая информация о результатах вы-
полнения PAM того или иного примитива.

Каждый модуль PAM должен содержать функции-обработчики
примитивов хотя бы одной подсистемы. Когда клиентская програм-
ма вызывает тот или иной примитив, PAM обращается к функциям-
обработчикам данного примитива одного или нескольких своих мо-
дулей. Важно отметить, что вся значимая функциональность PAM
сосредоточена в модулях, сама система PAM не выполняет никаких
действий, связанных с аутентификацией, а всего лишь вызывает в
определенной последовательности заданные функции заданных мо-
дулей и принимает решение на основании возвращаемых ими резу-
льтатов. Конкретный порядок того, какие функции каких модулей
должны вызываться и как должны интерпретироваться результаты
их вызова, определяется содержимым конфигурационных файлов
PAM.

Аутентификация 95

В ранних версиях PAM вся конфигурация PAM описывалась
единственным файлом /etc/pam.conf. В более поздних версиях каж-
дой клиентской программе сопоставляется индивидуальный файл
конфигурации, расположенный в директории /etc/pam.d. Имя это-
го файла обычно совпадает с именем клиента, так, например, файл
конфигурации службы SSH обычно имеет имя /etc/pam.d/sshd.
В каждом файле конфигурации содержится последовательность
строк, определяющих, какие PAM-модули должны использоваться
клиентом и каким образом это должно осуществляться. Конфигура-
ция PAM, используемая клиентскими программами по умолчанию,
описывается в файле /etc/pam.d/other.

В качестве примера файла конфигурации PAM рассмотрим
файл /etc/pam.d/login.conf из дистрибутива Simply Linux 5.0,1, опи-
сывающий порядок использования PAM программой login:

auth required pam securetty.so

auth include system-auth

auth required pam nologon.so

account include system-auth

password include system-auth

session required pam loginuid.so

session include system-auth

session optional pam lastlog.so nowtmp

session optional pam motd.so

session optional pam mail.so

session optional pam console.so

Каждая строка файла соответствует одному модулю PAM и
имеет вид

type control path arguments

Поле type описывает тип модуля. Каждой подсистеме прими-
тивов PAM соответствует одноименный тип модуля PAM. При вы-
зове клиентской программой примитива, принадлежащего опреде-
ленной подсистеме, будут последовательно вызваны соответствую-
щие функции-обработчики из всех модулей PAM соответствующего
типа, при этом порядок вызова функций соответствует порядку пе-
речисления модулей в конфигурационном файле.

Поле control описывает порядок интерпретации системой PAM
результата обращения к данному модулю. Если функция-обработ-
чик возращает значение PAM SUCCESS, считается, что модуль от-
работал успешно, в противном случае считается, что модуль сооб-
щил об ошибке. Эти сведения обрабатываются в зависимости от
значения поля control следующим образом:

96 Г л а в а 3

• requisite — если модуль сообщает об ошибке, выполнение теку-
щего примитива немедленно прерывается, клиентская програм-
ма получает сообщение об ошибке;

• required — если модуль сообщает об ошибке, клиентская прог-
рамма получает сообщение об ошибке, но выполнение прими-
тива продолжается (возможно, обнаружатся и другие ошибки,
клиенту будет полезно знать обо всех);

• sufficient — если модуль отработал успешно, выполнение при-
митива считается успешно завершенным, функции-обработчики
последующих модулей не вызываются;

• optional — модуль реализует второстепенные функции, не вли-
яющие на общий статус выполнения запроса, статус обращения
к модулю игнорируется.
Кроме перечисленных значений, поле control может также при-

нимать два специальных значения include и substack, указывающих,
что при интерпретации конфигурационного файла на место данной
строки должны быть последовательно подставлены все строки типа
type из конфигурационного файла path. Поле arguments в этом слу-
чае игнорируется. Значения include и substack различаются харак-
тером досрочного прерывания запроса при неуспешном обращении к
requisite-модулю или успешном обращении к sufficient-модулю. Если
дополнительный файл конфигурации был включен в текущий файл
командой include, запрос в этих случаях прерывается окончательно,
а если командой substack — отменяются лишь невыполненные обра-
щения к модулям вложенного файла.

Поле path содержит путь к соответствующему модулю PAM,
поле arguments — текстовую строку произвольного вида, которая
будет передана данному модулю в качестве параметра.

Модули каждого типа вызываются в соответствующих ситуаци-
ях поочередно, соответственно порядку их перечисления в конфи-
гурационном файле. Так, в вышеприведенном примере при аутен-
тификации пользователя вначале выполняется модуль pam securet-
ty.so, затем выполняется процедура аутентификации по умолчанию,
заданная в конфигурационном файле system-auth (учитываются то-
лько строки этого файла, описывающие модули типа auth), и если
по завершении этой процедуры решение еще не принято — выпол-
няется модуль pam nologon.so.

Рассмотрим еще один пример конфигурационного файла PAM —
файл /etc/раm.d/su, описывающий порядок взаимодействия с PAM
утилиты su:

auth sufficient pam rootok.so no warn

Аутентификация 97

auth sufficient pam self.so no warn

auth requisite pam group.so no warn group=wheel root only\
fail safe

auth include system

account include system

password required pam deny.so

session include system

Нетрудно видеть, что примитивы подсистем account и session в
данной конфигурации выполняются для команды su на общих осно-
ваниях, в соответствии с общесистемной политикой по умолчанию,
описанной в файле system. Примитив pam chauthtok (единственный
прототип из подсистемы password) утилитой su в обычных услови-
ях не вызывается, а если он все-таки будет вызван (например, в
результате попытки нарушителя проэксплуатировать программную
уязвимость), система PAM немедленно сообщит об ошибке (модуль
pam deny.so всегда сообщает об ошибке независимо от контекста об-
ращения к нему).

Теперь рассмотрим порядок обработки примитивов из подсис-
темы auth, например, примитива pam authenticate, непосредственно
реализующего аутентификацию пользователя.

Модуль pam rootok.so, указанный в первой строке, завершается
успешно, если он выполняется от имени суперпользователя root, и
неуспешно в противном случае. Таким образом, суперпользователь
root в данной конфигурации PAM имеет возможность выполнять ко-
манду su, не проходя дополнительной аутентификации (поскольку
модуль описан как sufficent, успешный результат проверки влечет за
собой успех всей процедуры аутентификации).

Модуль pam self.so, указанный во второй строке, завершается
успешно тогда и только тогда, когда запущена процедура повторной
аутентификации того же пользователя, от имени которого выпол-
няется текущий процесс, и неуспешно в противном случае. Таким
образом, если команда su user дана пользователем user (например,
при исполнении скрипта), повторное подтверждение подлинности
пользователя user не требуется.

Третья строка рассматриваемого конфигурационного файла за-
действует модуль pam group.so, который в данном случае проверя-
ет, что пользователь, давший команду su, является членом группы
wheel. Поскольку данный модуль описан как requisite, любая попыт-
ка выдачи команды su пользователем, не входящим в группу wheel,
завершится фатальной ошибкой.

Система PAM предоставляет мощные средства, позволяющие
гибко настраивать подсистему аутентификации для самых различ-

98 Г л а в а 3

ных ситуаций. Если, например, в некоторой конфигурации опера-
ционной системы необходимо полностью запретить выполнение ко-
манды su, достаточно вписать в начало файла /etc/раm.d/su строку

auth requisite pam deny.so
А если администратор операционной системы считает целесо-

образным разрешить бесконтрольное выполнение команды su люб-
ыми пользователями без повторной аутентификации (например, на
тестовой виртуальной машине) — вместо вышеприведенной строки
следует вставить следующую:

auth sufficient pam permit.so
Модули PAM позволяют реализовать в операционной системе не

только парольную аутентификацию пользователей, но и аутентифи-
кацию с использованием внешних электронных носителей информа-
ции (например, pam usb.so), а также биометрическую аутентифика-
цию (например, pam frprint.so). С помощью модуля pam listfile.so
можно реализовать в одной операционной системе различные схе-
мы аутентификации для конкретных списков пользователей, групп
пользователей, хостов и т. п. Например, следующая строка конфи-
гурационного файла:
auth sufficient pam listfile.so item=user sense=deny file=/etc/users.deny
запрещает вход в систему пользователям, имена которых перечис-
лены в файле /etc/user.deny.

Из других часто употребляемых модулей PAM следует упомя-
нуть:
• pab abl.so — поддерживает автоматическую блокировку попы-

ток аутентификации с удаленных хостов, с которых приходит
слишком много неудачных попыток аутентификации (вероятна
попытка подбора аутентификационных данных);

• pam alreadyloggedin.so — позволяет пропускать повторную ау-
тентификацию пользователя, уже аутентифицированного на
другой локальной консоли;

• pam chroot.so — помещает авторизуемого пользователя в «пе-
сочницу», предоставляя ему в качестве корневого каталога фай-
ловой системы какой-то другой каталог;

• pam echo.so — выдает текстовое сообщение, заданное парамет-
ром модуля. Применяется главным образом для выдачи пре-
дупреждающих сообщений, правил пользования тем или иным
сервисом и т. п.;

• pam exec.so — запускает указанную программу. Может, приме-
няться, например, для автоматического монтирования домаш-

Аутентификация 99

него каталога в ходе авторизации пользователя, если этот до-
машний каталог физически расположен на удаленном сервере;

• pam ldap.so — реализует схему аутентификации, совместимую
со сквозной аутентификацией в доменах Windows;

• pam lockout.so — запрещает вход в систему пользователю, имя
которого указано в параметре модуля;

• pam mkhomedir.so — автоматически создает для авторизуемого
пользователя домашнюю директорию, если таковая не сущес-
твует;

• pam namespace.so — позволяет предоставлять авторизуемому
пользователю индивидуальные образы некоторых системных
директорий (чаще всего применяется для директории /tmp);

• pam pwdfile.so — требует проводить дальнейшую аутентифика-
цию с использованием не системного списка пользователей, а
альтернативного списка, хранящегося в указанном файле;

• pam unix.so — реализует UNIX-аутентификацию по умолчанию
(вычисляет хеш-функцию пароля, заданную текущей конфигу-
рацией операционной системы, и сравнивает с значением, хра-
нящимся в /etc/shadow). Практически всегда включается в
скрипт аутентификации по умолчанию, включаемый в конфи-
гурационные файлы всех клиентов через директиву include.
Таким образом, архитектура PAM позволяет администратору

UNIX-системы гибко настраивать подсистему аутентификации в со-
ответствии с реальными потребностями конкретной вычислитель-
ной сети и конкретного экземпляра операционной системы. Все, что
нужно сделать администратору, — установить в системе необходи-
мые модули PAM и обеспечить корректное взаимодействие между
ними. В результате подсистема аутентификации может быть лег-
ко адаптирована к самым разным технологиям аутентификации,
принятым в конкретной организации. В частности, на базе PAM
может быть реализована аутентификация с использованием смарт-
карт или биометрическая аутентификация. Для этого достаточно,
чтобы разработчик аппаратного устройства, используемого для ау-
тентификации, поставлял вместе со своим устройством соответст-
вующий модуль PAM.

3.3. Аутентификация в Windows
В Windows задачи идентификации, аутентификации и автори-

зации пользователей решаются специальной подсистемой аутен-
тификации. Подсистема аутентификации Windows делится на три
уровня — верхний, средний и нижний. Средний уровень подсистемы

100 Г л а в а 3

аутентификации пользуется услугами нижнего уровня и предостав-
ляет услуги верхнему.

Верхний уровень подсистемы аутентификации Windows вклю-
чает в себя процесс аутентификации winlogon.exe и так называемые
провайдеры аутентификации — заменяемые библиотеки, реали-
зующие большую часть высокоуровневых функций процесса аутен-
тификации.

Процесс Winlogon представляет собой обычный процесс, выпол-
няющийся от имени псевдопользователя SYSTEM. Данный процесс
автоматически запускается при старте операционной системы и ос-
тается активным до выключения питания или перезагрузки. При
аварийном завершении Winlogon происходит аварийное завершение
работы всей операционной системы («синий экран»). Таким обра-
зом, подменить Winlogon в процессе функционирования операцион-
ной системы практически невозможно.

При входе пользователя в систему с локального или удаленного
терминала провайдер, обслуживающий данный терминал, получает
от пользователя его имя и пароль. В Windows 2003 и более ранних
версиях по умолчанию использовался единственный провайдер ау-
тентификации — библиотека msgina.dll, которая осуществляет все
взаимодействие между локальным пользователем и процессом ау-
тентификации. Начиная с Windows Vista, в Windows реализован
более сложный механизм взаимодействия провайдеров аутентифи-
кации и процесса Winlogon, основанный на COM-интерфейсах и поз-
воляющий одновременно использовать несколько различных про-
вайдеров аутентификации.

Вход локального пользователя в систему обычно выполняется
в Windows следующим образом.

1. Провайдер аутентификации получает от пользователя иден-
тификационную и аутентификационную информацию. В стандарт-
ной конфигурации операционной системы в качестве идентификаци-
онной информации используется текстовое имя, а в качестве аутен-
тификационной информации — текстовый пароль. Также возможно
применение для аутентификации внешних носителей ключевой ин-
формации или биометрических характеристик пользователя.

2. Провайдер аутентификации генерирует запрос на аутентифи-
кацию, передавая необходимые данные на средний уровень подсис-
темы аутентификации с помощью системного вызова LsaLogonUser
или одной из более высокоуровневых программных оберток этого
системного вызова. Если аутентификация прошла успешно, созда-
ется маркер доступа пользователя.

Аутентификация 101

3. Если маркер доступа пользователя создан успешно, провай-
дер аутентификации осуществляет авторизацию пользователя, за-
пуская процесс userinit.exe от имени аутентифицированного пользо-
вателя. Для этого используется системный вызов CreateProcessAs
User, который отличается от вызова CreateProcess только тем, что
запускаемому процессу назначается маркер доступа, отличный от
маркера доступа процесса-родителя. В данном случае процессу user-
init назначается только что созданный маркер доступа авторизуемо-
го пользователя.

4. Процесс userinit загружает индивидуальные настройки поль-
зователя из его профиля, запускает программу-оболочку пользова-
теля (чаще всего это Проводник Windows) и после этого завершает
работу.

В средний уровень подсистемы аутентификации Windows вхо-
дит локальный распорядитель безопасности (local security autho-
rity, LSA) и так называемые пакеты аутентификации — заме-
няемые библиотеки, реализующие большую часть низкоуровневых
функций аутентификации.

Локальный распорядитель безопасности представляет собой
сервисный процесс lsass.exe, выполняющийся от имени псевдополь-
зователя SYSTEM. Аварийное завершение LSA приводит к аварий-
ному завершению работы всей операционной системы. Так же, как
и Winlogon, LSA передоверяет большинство своих функций заменя-
емым библиотекам. Стандартная схема аутентификации Windows
NT обслуживалась пакетом аутентификации MSV 1.0 (msv1 0.dll),
а начиная с Windows 2000, стандартным является пакет аутентифи-
кации Kerberos.

Пакет аутентификации осуществляет аутентификацию пользо-
вателя в процессе обработки системного вызова LsaLogonUser. Ау-
тентификация производится следующим образом.

1. Пакет аутентификации получает от верхнего уровня под-
системы аутентификации имя и пароль пользователя и генерирует
образ пароля.

2. Используя услуги нижнего уровня подсистемы аутентифи-
кации, пакет аутентификации получает информацию, необходимую
для проверки пароля, и проверяет пароль. Проверка пароля может
вестись как путем простого сравнения хеш-образа введенного паро-
ля с эталонным хеш-образом (протоколы LanManager, NTLM), так
и путем более сложных криптографических процедур (Kerberos).

3. Если введенный пароль признан корректным, LSA получает
от нижнего уровня подсистемы аутентификации информацию о том,

102 Г л а в а 3

может ли данный пользователь начинать в данный момент работу
с данной рабочей станцией (не устарел ли пароль, не заблокирован
ли бюджет пользователя и т. д.).

4. В случае положительного результата проверки LSA форми-
рует маркер доступа пользователя, получая необходимую информа-
цию от нижнего уровня подсистемы аутентификации.

5. LSA передает сформированный маркер доступа верхнему
уровню подсистемы аутентификации.

Нижний уровень подсистемы аутентификации Windows отвеча-
ет за хранение в системе учетной информации о пользователях, в
том числе и эталонных образов паролей. При аутентификации по-
льзователя нижний уровень подсистемы аутентификации передает
среднему уровню эталонный образ пароля пользователя, а при ав-
торизации — список групп и привилегий пользователя.

Аутентификация при удаленном входе в систему осуществляет-
ся в целом по той же схеме за исключением того, что на верхнем
уровне вместо процесса Winlogon может выступать произвольная
пара клиент + сервер. Существует специальный интерфейс SSPI
(Security Support Provider Interface), обеспечивающий взаимодейст-
вие приложений Windows с LSA в ходе аутентификации. В Windows
поддерживается пять стандартных провайдеров сетевой аутентифи-
кации.

NTLM (NT Lan Manager, поддерживается начиная с Windows
NT 4.0)

Данный провайдер является наиболее универсальным, он мо-
жет применяться практически в любой ситуации, когда необходимо
осуществить удаленную аутентификацию. Алгоритм сетевого взаи-
модействия выглядит в общих чертах следующим образом.

1. Клиент направляет серверу имя пользователя в открытом
виде (в NTLM идентификационная информация пользователя не
считается секретом).

2. Сервер генерирует случайное число от 0 до 65535 и высылает
его клиенту.

3. Клиент зашифровывает это число, используя в качестве клю-
ча хеш-функцию пароля пользователя и высылает результат шиф-
рования серверу. В качестве алгоритма шифрования используется
модификация алгоритма DES.

4. Сервер проводит аналогичные вычисления и сравнивает ре-
зультат с полученным от клиента. Если результаты совпали, ау-
тентификация признается успешной, в противном случае — неус-
пешной. В домене Windows сервер может передоверить данный шаг

Аутентификация 103

алгоритма контроллеру домена.
Kerberos (поддерживается начиная с Windows 2000)
Протокол аутентификации Kerberos весьма сложен, и детальное

его рассмотрение выходит за рамки настоящего пособия. Отметим
лишь основные его достоинства и недостатки.

Основным достоинством протокола Kerberos является его чрез-
вычайно высокая стойкость. Даже перехватив весь трафик инфор-
мационного взаимодействия всех участников процесса аутентифи-
кации, получить несанкционированный доступ к ресурсам любого
из участников информационного обмена практически невозможно.
Особеннно повышают защищенность Kerberos жесткие ограничения,
которые данный протокол устанавливает на время аутентификации.
Большинство данных, которые могут быть перехвачены нарушите-
лем, устаревают спустя считанные минуты, некоторые данные мо-
гут сохранять актуальность несколько часов. В любом случае, сов-
ременная вычислительная техника, включая суперкомпьютеры, не
позволяет осуществлять взлом используемых криптографических
алгоритмов за приемлемое время.

Основным недостатком Kerberos является то, что аутентифи-
кация по этому протоколу требует некоторой подготовительной ра-
боты и не может быть выполнена произвольной парой клиент +
сервер. Как минимум, клиент и сервер должны выбрать сервера-
посредника, которому они оба доверяют и который заранее осве-
домлен о некоторых характеристиках клиента и сервера. Поэтому
протокол Kerberos может эффективно применяться только в цент-
рализованно управляемых локальных сетях с априорно известными
топологией и структурой. Существуют модификации Kerberos для
работы в Internet и даже для локальной аутентификации, но это,
фактически, профанация — в этих режимах Kerberos не имеет ни-
каких преимуществ по сравнению с более примитивными протокола-
ми типа NTLM, но вычислительная сложность криптографических
преобразований Kerberos существенно выше.

Negotiate (поддерживается начиная с Windows 2000)
Этот провайдер обеспечивает автоматический выбор про-

вайдера между NTLM и Kerberos. В современных версиях Windows
Negotiate выбирает NTLM лишь в тех случаях, когда использова-
ние Kerberos невозможно по техническим причинам. Как правило,
приложения обращаются не к NTLM и не к Kerberos, а именно к
Negotiate.

Digest (поддерживается начиная с Windows XP)

104 Г л а в а 3

Данный протокол аутентификации специально предназначен
для веб-приложений. Подробно спецификации протокола изложены
в RFC 2617. Функционально Digest похож на NTLM, для криптогра-
фических преобразований в Digest может использоваться поточный
шифр RC4 с длиной ключа 40, 56 или 128 бит, а также DES либо
Triple DES.

Schannel (поддерживается начиная с Windows NT 4.0 SP4)
Этот провайдер поддерживает протоколы сетевой аутентифи-

кации TLS 1.0 и SSL 3.0, а также устаревший протокол PCT 1.0.
К криптографическим преобразованиям, используемым Schannel,
относятся RC2, RC4, DES, Triple DES, RSA, DHE, MD5, SHA.

Помимо перечисленных стандартных провайдеров, Windows мо-
жет работать и с нестандартными провайдерами, созданными вне
Microsoft. Интерфейсы, используемые провайдерами аутентифика-
ции, практически полностью документированы.

Начиная с Windows 2000, Windows поддерживает специальный
унифицированный интерфейс, обслуживающий внешние носители
ключей аутентификации.

Подсистема аутентификации Windows обладает достаточно бо-
льшой гибкостью и позволяет администраторам операционной сис-
темы настраивать различные параметры аутентификации как для
отдельных пользователей системы, так и для всех пользователей в
совокупности.

Администраторы Windows могут вводить следующие ограниче-
ния на пароли пользователей:
• минимальный и максимальный срок действия пароля;
• минимальную допустимую длину пароля;
• минимальное допустимое количество смен пароля до первого

повторения;
• должна ли при смене пароля пользователем проводиться про-

верка качества нового пароля;
• разрешать ли хранение в системе образов паролей, допускаю-

щих обратное расшифрование (обычно это запрещено, но может
потребоваться для некоторых сетевых сервисов);

• максимально допустимое количество неудачных попыток входа
в систему;

• срок, по истечении которого счетчик неудачных попыток входа
в систему обнуляется;

• срок, на который пользователю запрещается вход в систему в
случае превышения максимально допустимого количества неу-
дачных попыток входа в систему (может быть неограниченным,

Аутентификация 105

в этом случае запрет на вход пользователя в систему может
быть снят только администратором);

• могут ли пользователи самостоятельно менять пароль в случае
истечения максимального срока его действия, или они должны
уведомлять администратора о случившемся;

• могут ли использоваться пустые пароли при сетевой аутенти-
фикации;

• какие протоколы аутентификации могут использоваться прог-
раммами, выполняющимися в данной системе;

• должно ли выдаваться пользователю, осуществляющему лока-
льный вход в систему, имя пользователя, осуществлявшего ло-
кальный вход в систему в предыдущий раз;

• обязан ли пользователь нажимать Ctrl-Alt-Del перед вводом
имени и пароля;

• какое сообщение должно выдаваться пользователю перед вхо-
дом в систему;

• за какое время до истечения срока действия пароля пользова-
тель начинает получать предупреждения от операционной сис-
темы;

• обязательно ли использование внешних носителей ключа при
локальной аутентификации;

• как операционная система должна реагировать на извлечение
внешнего носителя аутентификационной информации из соот-
ветствующего устройства (варианты: никак не реагировать, за-
блокировать консоль, завершить сеанс работы пользователя с
операционной системой);

• через какое время неактивное сетевое соединение должно при-
нудительно разрываться;

• должен ли принудительно завершаться сеанс работы пользова-
теля с операционной системой по истечении разрешенного ин-
тервала времени;

• разрешено ли использовать при генерации образа пароля уста-
ревшую хеш-функцию Lan Manager, обладающую низкой крип-
тографической стойкостью;

• должен ли список зарегистрированных пользователей и групп
считаться конфиденциальным.
Механизм автоматической блокировки (lock out) пользователя

при превышении максимально допустимого количества неудачных
попыток входа в систему не распространяется на пользователя Ad-
ministrator.

106 Г л а в а 3

Для каждого конкретного пользователя могут быть установле-
ны следующие флаги:
• пользователь обязан сменить пароль при ближайшем входе в

систему — обычно применяется для только что зарегистриро-
ванных пользователей;

• пользователь не может менять свой пароль — обычно применя-
ется для «групповых» пользователей (например, Guest);

• на пользователя не распространяется ограничение максималь-
ного срока действия пароля — обычно применяется в совокуп-
ности с предыдущим требованием;

• пользователь не может работать в системе — применяется для
временного блокирования учетной записи пользователя (напри-
мер, на период отпуска или болезни пользователя).
Для пользователей домена могут быть введены следующие до-

полнительные требования к процедурам идентификации, аутенти-
фикации и авторизации:
• время работы пользователя с операционной системой может

быть ограничено, в этом случае вход пользователя в систему
разрешается только в отведенные для этого часы;

• количество компьютеров, с которых пользователь может вхо-
дить в домен, может быть ограничено, администратор может
явно перечислить компьютеры, с которых разрешен вход поль-
зователя в домен;

• может быть установлена автоматическая блокировка учетной
записи пользователя по истечении определенного времени;

• может быть указана программа или скрипт, автоматически вы-
полняемая при входе пользователя в систему;

• может быть ограничена продолжительность терминальных сес-
сий пользователя (подключений к терминальному серверу с
удаленных компьютеров через Remote Desktop или другую по-
добную программу);

• может быть включена функция удаленного контроля («подс-
матривания») администратора за действиями пользователя в
ходе работы с терминальным сервером. В зависимости от наст-
роек данной функции, вмешательство администратора в сессию
пользователя может происходить либо только с разрешения по-
льзователя, либо без разрешения, незаметно для пользователя.
Вмешательство администратора может быть ограничено прос-
мотром пользовательского терминала либо ничем не ограниче-
но — в этом случае администратор может управлять клавиату-
рой и мышью вместе с пользователем;

Аутентификация 107

• могут быть установлены особые правила использования поль-
зователем удаленного подключения к домену через модем или
VPN.
Помимо вышеперечисленных требований и ограничений, при

идентификации и аутентификации пользователя также осуществля-
ется проверка одной из следующих пяти так называемых привиле-
гий входа (привилегии входа, строго говоря, не являются привиле-
гиями, поскольку никогда не добавляются в маркер доступа пользо-
вателя и, следовательно, не учитываются монитором безопасности
объектов операционной системы):
• входить в систему интерактивно;
• входить в систему через сеть;
• входить в систему через терминальный сервер;
• запускать сервис от своего имени;
• запускать пакетное задание (batch job) от своего имени.

То, какая «привилегия» должна проверяться, определяется
провайдером при вызове функции LogonUser. Например, если чет-
вертый параметр этой функции равен LOGON32 LOGON SERVICE,
это означает, что пользователь входит в систему в качестве серви-
са, т. е. запускает сервис от своего имени, и должна быть проверена
«привилегия» запускать сервисы от своего имени.

Начиная с Windows 2000, для каждой привилегии входа под-
держивается два списка — белый и черный. Чтобы субъект доступа
получил некоторую привилегию входа, он должен быть прямо или
косвенно упомянут в соответствующем белом списке и ни прямо, ни
косвенно не упомянут в соответствующем черном списке.

В лесу доменов Windows все вышеперечисленные параметры ин-
тегрированы в групповую политику дерева доменов, что позволяет
при необходимости централизованно управлять параметрами аутен-
тификации всех компьютеров определенных подразделений корпо-
ративной сети либо всей корпоративной сети в целом.

Выше была изложена стандартная схема идентификации и ау-
тентификации пользователя в Windows, которая применяется при
использовании стандартных провайдеров и пакетов аутентифика-
ции. Однако поскольку и провайдеры, и пакеты аутентификации яв-
ляются заменяемыми компонентами подсистемы аутентификации,
администратор операционной системы может, установив нестандар-
тный провайдер или пакет аутентификации, реализовать в Windows
любую другую схему аутентификации. Для этого необходимо все-
го лишь разместить в системной директории Windows необходимые
библиотеки и внести изменения в соответствующие ключи реестра.

108 Г л а в а 3

Вопросы для самопроверки
1. Что такое идентификация, аутентификация, авторизация?
2. Какие три основные схемы аутентификации вы знаете?
3. Каково важнейшее преимущество парольной аутентификации по срав-

нению с другими схемами?
4. Как должен храниться в операционной системе эталонный образ пароля,

предназначенный для проверки пароля в ходе аутентификации?
5. Как можно построить криптографически стойкую хеш-функцию на осно-

ве практически стойкого симметричного криптографического преобразования?
6. Почему при хешировании паролей следует использовать маркант?
7. С какой целью применяемые при хешировании паролей хеш-функции

иногда подвергаются искусственному усложнению, сильно замедляющему время
вычисления функции?

8. Чем отличаются онлайн-подбор паролей от оффлайн-подбора?
9. Как строятся алгоритмы тотального перебора паролей?
10. Как строятся алгоритмы подбора паролей по словарю?
11. Какие пароли являются самыми распространенными в мире?
12. Зачем нужно ограничивать сроки действия паролей?
13. Какие ограничения обычно накладываются на содержание паролей?
14. В каких ситуациях целесообразно применять генерацию паролей не по-

льзователем, а самой операционной системой?
15. Какова максимальная криптографическая стойкость системы пароль-

ной аутентификации, достижимая при условии, что пользователь не обладает
феноменальной способностью запоминать длинные бессмысленные последова-
тельности букв и цифр?

16. К каким негативным последствиям приводит неоправданное завышение
требований к длине и качеству паролей пользователей операционной системы?

17. Какие способы придумывания трудно подбираемых, но легко запоми-
наемых паролей вы знаете?

18. Каково важнейшее преимущество схемы аутентификации, основанной
на внешних электронных носителях аутентификационных данных?

19. Какие дополнительные преимущества дает применение в качестве но-
сителя аутентификационных данных интеллектуальной пластиковой карты, со-
держащей бортовой микропроцессор?

20. Какие проблемы возникают при генерации ключей, предназначенных
для аутентификации с использованием внешних электронных носителей аутен-
тификационных данных?

21. Почему при генерации ключей для внешних электронных носителей
аутентификационных данных нельзя применять стандартные алгоритмы прог-
раммной генерации псевдослучайных последовательностей?

22. Какие тесты можно применять для оценки качества случайной после-
довательности?

23. Какие методы получения истинно случайных последовательностей с
помощью программных генераторов вы знаете?

24. Какие проблемы возникают при рассылке ключей, предназначенных
для аутентификации с использованием внешних электронных носителей аутен-
тификационных данных?

25. Какие проблемы возникают при плановой и экстренной замене ключей,
предназначенных для аутентификации с использованием внешних электронных
носителей аутентификационных данных?

Аутентификация 109

26. Что такое биометрическая аутентификация, каково ее важнейшее пре-
имущество перед другими схемами аутентификации?

27. Какие проблемы возникают при практической реализации биометри-
ческой аутентификации?

28. Где и в каком формате обычно хранится список пользователей в опе-
рационных системах семейства UNIX?

29. В каких файлах хранится текущая конфигурация PAM?
30. Какие типы PAM-модулей вы знаете?
31. Как поле control конфигурационной записи PAM-модуля влияет на по-

рядок интерпретации результата обращений PAM к этому модулю?
32. Как сконфигурировать PAM, чтобы команда su предоставляла полно-

мочия суперпользователя без ввода соответствующего пароля?
33. Как с помощью PAM можно реализовывать в одной операционной сис-

теме разные схемы аутентификации для конкретных списков пользователей и
групп пользователей?

34. Что необходимо для реализации на базе PAM аутентификации с испо-
льзованием внешних электронных носителей аутентификационных данных или
биометрической аутентификации?

35. На какие три уровня распадается подсистема аутентификации Win-
dows? Какие основные задачи решаются на каждом из них?

36. Перечислите основные достоинства и недостатки протокола аутенти-
фикации Kerberos.

37. Какие ограничения на пароли пользователей могут применяться в Win-
dows?

38. В каких ситуациях пользователь Windows обязан нажимать Ctrl-Alt-Del
перед каждым вводом пароля на вход в систему?

39. Какие индивидуальные параметры аутентификации могут быть уста-
новлены для конкретного пользователя Windows?

40. Какие привилегии входа поддерживаются в Windows?
41. Как можно построить в Windows нестандартную схему аутентификации

пользователя?

4 Аудит и обнаружение вторжений

4.1. Общие сведения
Процедура аудита применительно к защищенным компьютер-

ным системам заключается в регистрации в специальном журнале,
называемом журналом аудита или журналом безопасности, со-
бытий, которые могут представлять опасность для системы. Поль-
зователи системы, обладающие правом чтения этого журнала, на-
зываются аудиторами.

Необходимость включения в защищенную систему функций ау-
дита диктуется следующими обстоятельствами.
• Подсистема защиты компьютерной системы, не обладая интел-

лектом, неспособна отличить случайные ошибки пользователей
от злонамеренных действий. Например, то, что пользователь
в процессе входа в систему ввел неправильный пароль, может
означать как случайную ошибку при вводе пароля, так и по-
пытку подбора пароля. Но, если сообщение о подобном событии
занесено в журнал аудита, администратор, просматривая этот
журнал, возможно, сможет установить, что же имело место на
самом деле — ошибка легального пользователя или атака зло-
умышленника. Если пользователь ввел неправильный пароль
всего один раз — это явная ошибка. Если же пользователь пы-
тался угадать собственный пароль 20–30 раз — это явная по-
пытка подбора пароля.

• Администраторы защищаемой системы должны иметь возмож-
ность получать информацию не только о текущем состоянии
системы, но и о том, как она функционировала в недавнем
прошлом. Журнал аудита дает такую возможность, накапли-
вая информацию о важных событиях, связанных с безопаснос-
тью операционной системы.

• Если администратор обнаружил, что против защищаемой сис-
темы проведена успешная атака, ему важно выяснить, когда
она была начата и каким образом она осуществлялась. При
наличии в системе подсистемы аудита не исключено, что вся
необходимая информация содержится в журнале аудита.
Некоторые эксперты по компьютерной безопасности полагают,

что привилегия работать с подсистемой аудита не должна предостав-

Аудит и обнаружение вторжений 111

ляться администраторам операционной системы. Другими словами,
множества администраторов и множество аудиторов не должны пе-
ресекаться. При этом создается ситуация, когда администратор не
может выполнять несанкционированные действия без того, чтобы
это тут же стало известно аудиторам, что повышает защищенность
системы от несанкционированных действий администраторов.

Однако на практике отделение аудиторов от администраторов
применяется редко, что обусловлено следующими причинами:
• обслуживание аудита на одном компьютере занимает сущест-

венно меньше времени, чем администрирование одного компью-
тера. В большой организации на одного аудитора должно при-
ходиться 5–20 администраторов. Если организация невелика и
в ней предусмотрены всего 1–2 штатные должности системных
администраторов, создавать отдельную штатную должность ау-
дитора нецелесообразно;

• администраторы и аудиторы часто вступают в приятельские
отношения, в результате чего аудитор далеко не всегда док-
ладывает начальнику об обнаруженных злоупотреблениях ад-
министраторов. Бывает, что аудиторы не только прикрывают
злоупотребления администраторов, но и сами участвуют в них.
Если отделение аудиторов от администраторов не подкреплено
организационно-административными мерами, оно может оста-
ваться чисто формальным — аудитор знает пароль админист-
ратора, администратор знает пароль аудитора, и оба они поль-
зуются полномочиями друг друга по мере необходимости;

• при наличии в организации выделенного аудитора, недостаточ-
но загруженного работой, аудитор часто вводит чрезмерно стро-
гий контроль за действиями пользователей, негативно сказыва-
ющийся на моральном климате в коллективе. Пользователей
сильно нервирует ситуация, когда малейшее нарушение правил
работы с компьютерной системой (например, однократное посе-
щение развлекательного сайта Internet) немедленно становится
известным службе безопасности и влечет за собой неотврати-
мое наказание. Практика показывает, что выделенные ауди-
торы более склонны к реализации «параноической» политики
безопасности, чем аудиторы, совмещающие свои обязанности с
обязанностями системного администратора.
Обычно отделение аудиторов от администраторов практикуется

только в крупных организациях (корпорациях, банках и т. п.). При
этом обязанности аудитора часто берет на себя должностное лицо,

112 Г л а в а 4

которому непосредственно подчиняются системные администрато-
ры, либо его заместитель.

Подсистема аудита операционной системы должна удовлетво-
рять следующим требованиям.
• Добавлять записи в журнал аудита могут только псевдополь-

зователи, от имени которых выполняются системные процессы.
Если предоставить эту возможность какому-то физическому по-
льзователю, данный пользователь получит возможность комп-
рометировать других пользователей, добавляя в журнал аудита
соответствующие записи.

• Ни один субъект доступа, в том числе и сама операционная сис-
тема, не имеет возможности редактировать или удалять отде-
льные записи в журнале аудита.

• Только пользователи-аудиторы, обладающие соответствующей
привилегией, могут просматривать журнал аудита.

• Только пользователи-аудиторы могут очищать журнал аудита.
После очистки журнала в него автоматически вносится запись
о том, что журнал аудита был очищен, с указанием времени
очистки журнала и имени пользователя, очистившего журнал.
Система аудита должна поддерживать возможность сохранения
журнала аудита перед очисткой в другом файле.
Для ограничения доступа пользователей к журналу аудита не

всегда достаточно обычных средств разграничения доступа. В по-
давляющем большинстве систем администратор локальной или кор-
поративной сети, используя свои привилегии, может прочитать и
изменить содержимое любого файла, хранящегося на любом ком-
пьютере сети. Поэтому, если принятая в системе политика безопас-
ности предусматривает разделение администраторов и аудиторов, то
для ограничения доступа к журналу аудита желательно применять
дополнительные средства защиты, например, криптографические.

Политика аудита — это совокупность правил, определяющая
то, какие события должны регистрироваться в журнале аудита. Для
обеспечения надежной защиты операционной системы в журнале
аудита должны обязательно регистрироваться следующие события:
• попытки входа/выхода пользователей из системы;
• попытки изменения списка пользователей;
• попытки изменения политики безопасности, в том числе и по-

литики аудита.
При определении политики аудита не следует ограничиваться

регистрацией событий только из перечисленных классов. Окончате-
льный выбор того, какие события должны регистрироваться в жур-

Аудит и обнаружение вторжений 113

нале аудита, возлагается на самих аудиторов. При этом политика
аудита в значительной степени определяется спецификой информа-
ции, хранимой и обрабатываемой в операционной системе, и не зная
этой специфики, давать какие-либо рекомендации бессмысленно.

При выборе оптимальной политики аудита следует учитывать
ожидаемую скорость заполнения журнала аудита. Если политика
аудита предусматривает регистрацию слишком большого числа со-
бытий, это не только не повышает защищенность операционной сис-
темы, но, наоборот, снижает ее. Если новые записи добавляются в
журнал аудита слишком часто, аудиторам будет трудно выделить в
огромном объеме малозначительной информации те события, кото-
рые представляют реальную угрозу безопасности системы. Кроме
того, чем быстрее заполняется журнал аудита, тем чаще его нужно
очищать и тем больше вероятность его переполнения.

Политику аудита не следует рассматривать как нечто неизмен-
ное, заданное раз и навсегда. Политика аудита должна оперативно
реагировать на изменения в конфигурации операционной системы,
в характере хранимой и обрабатываемой информации, и, особенно,
на выявленные попытки атаковать защищаемую операционную сис-
тему. Если, например, с помощью аудита было обнаружено, что
имела место попытка преодолеть защиту операционной системы, но
основные принципы реализации этой атаки остались неясными, це-
лесообразно изменить политику аудита таким образом, чтобы при
дальнейших попытках осуществлять аналогичные атаки аудиторы
получали более подробную информацию.

В целом политика аудита является своего рода искусством, и
выбор оптимальной политики в значительной мере определяется
опытом и интуицией аудитора.

В некоторых конфигурациях операционных систем подсистема
аудита помимо записи информации о зарегистрированных событиях
в специальный журнал предусматривает возможность интерактив-
ного оповещения аудиторов об этих событиях. Когда аудитор начи-
нает работу с операционной системой одного из компьютеров сети,
операционные системы других компьютеров получают соответству-
ющие сообщения, после чего при каждой регистрации события в
журнале аудита одного из компьютеров копия информации об этом
событии передается на терминал, с которым работает аудитор. Как
правило, для реализации подобного механизма требуется установка
дополнительного программного обеспечения.

Множество событий, регистрируемых в журнале аудита, не обя-
зательно должен совпадать с множеством событий, информация о

114 Г л а в а 4

которых передается аудиторам интерактивно. Целесообразно так
организовать интерактивное оповещение аудиторов, чтобы аудито-
ры получали оповещение только о наиболее важных событиях —
в противном случае аудиторам будет трудно выделить в сплошном
потоке сообщений по-настоящему полезную информацию.

Данная дополнительная функция подсистемы аудита позволяет
аудиторам более оперативно реагировать на попытки преодоления
злоумышленниками защиты операционной системы и тем самым по-
вышает общую защищенность системы.

4.2. Системы обнаружения вторжений
Логическим развитием концепции аудита является система об-

наружения вторжений (СОВ), или intrusion detection system
(IDS) — специализированное программное или программно-аппарат-
ное средство, предназначенное для выявления успешных и неус-
пешных попыток осуществления несанкционированного доступа к
ресурсам компьютерной системы или сети. Системы обнаружения
вторжений обладают двумя характеристическими отличиями от об-
ычных систем аудита:
• система обнаружения вторжений не просто регистрирует отде-

льные события, происходящие в системе, но и анализирует их
в совокупности, пытаясь обнаружить в последовательности за-
фиксированных событий признаки атаки;

• система обнаружения вторжений может оперативно реагирова-
ть на обнаруженные атаки, самостоятельно блокируя соответс-
твующие функции системы до того, как нарушитель успел им
воспользоваться.
До середины 2000-х годов системы обнаружения вторжений при-

менялись на практике крайне редко, некоторые специалисты и ком-
пании (например, Gartner) высказывали даже предположения, что к
2005 году системы обнаружения вторжений практически перестанут
применяться на практике. Однако современные тенденции в области
информационной безопасности таковы, что область применения сис-
тем обнаружения вторжений становится все шире и системы обна-
ружения вторжений постепенно перестают быть «экзотикой». Так,
в конце 2004 года неизвестные хакеры получили несанкционирован-
ный доступ к базе данных персональной информации о сотрудниках
и студентах Калифорнийского университета, а обнаружен этот факт
был только в 21 ноября 2006 года, когда один из администраторов
случайно обратил внимание на необычный характер сетевого тра-
фика. При наличии системы обнаружения вторжений в сети атако-

Аудит и обнаружение вторжений 115

ванного университета факт взлома системы был бы, скорее всего,
обнаружен гораздо раньше.

Типичная архитектура системы обнаружения вторжений вклю-
чает в себя следующие основные элементы:
• сенсоры, обеспечивающие сбор информации для последующего

анализа;
• анализаторы, осуществляющие анализ полученной сенсорами

информации;
• хранилище (как правило, базу данных), в которое помещаются

результаты работы анализатора;
• консоль управления, обеспечивающую взаимодействие адми-

нистратора безопасности с системой обнаружения вторжений.
По набору используемых сенсоров системы обнаружения втор-

жений классифицируются на:
• узловые, или хостовые (host IDS, HIDS) — берут информацию

от подсистемы аудита защищаемой операционной системы или
системы управления базами данных, а также дополнительных
защитных подсистем (контроля целостности, антивирусного мо-
ниторинга и т. п.);

• сетевые (network IDS, NIDS) — анализируют сетевой трафик;
• гибридные или смешанные.

По способности предпринимать активные действия в ответ на
выявленные угрозы безопасности системы обнаружения вторжений
классифицируются на:
• активные;
• пассивные.

Сенсоры HIDS делятся на пять основных типов:
• сенсоры журналов;
• сенсоры признаков;
• сенсоры системных вызовов;
• сенсоры поведения приложений;
• сенсоры целостности файлов.

Сенсоры NIDS представляют собой программные или програм-
мно-аппаратные снифферы, осуществляющие перехват сетевого
трафика одного компьютера или целого сегмента локальной сети.

Большинство IDS могут анализировать не только информацию,
полученную непосредственно с сенсоров в реальном времени, но и
работать с журналами, содержащими ранее собранную информа-
цию. Это позволяет проводить при необходимости повторный «раз-
бор полетов» для различных инцидентов, связанных с информаци-
онной безопасностью, например, проверять, способна ли перенаст-

116 Г л а в а 4

роенная система обнаружения вторжений обнаружить атаку, ранее
прошедшую незамеченной.

Анализаторы IDS анализируют собранную сенсорами информа-
цию на предмет сходства с типичными атаками нарушителей. Сов-
ременные системы обнаружения вторжений довольно надежно де-
тектируют сканирование портов, с которого начинается большин-
ство сетевых атак, а также попытки программных закладок, про-
никших внутрь защищаемой сети, связываться со своими хозяева-
ми через Интернет. При этом, в отличие от традиционных систем
разграничения доступа и аудита, системы обнаружения вторжений
реагируют не на каждое зафиксированное событие в отдельности,
а на всю последовательность событий в совокупности. Так, сете-
вая система обнаружения вторжений позволяет не просто блокиро-
вать трафик, идущий на определенные порты или исходящий от
определенных процессов, но реализовывать более сложные прави-
ла фильтрации трафика, оценивая опасность не каждого пакета в
отдельности, но целой последовательности пакетов в совокупности.

В некоторых системах обнаружения вторжений, например, в
EMERALD, используется многоуровневая модель построения анали-
заторов. Анализаторы низшего уровня анализируют информацию
от отдельных сенсоров, анализаторы более высокого уровня объе-
диняют в одно целое информацию, полученную от больших групп
сенсоров, и обрабатывают ее в совокупности, хотя и с меньшей де-
тализацией. Анализаторы высоких уровней могут получать часть
информации от анализаторов низких уровней.

Многоуровневая схема построения анализаторов позволяет сис-
теме обнаружения вторжений эффективно обнаруживать угрозы
безопасности, затрагивающие сразу несколько компонент защища-
емой системы.

Правила, реализуемые анализаторами IDS, бывают двух ви-
дов — сигнатурные и эвристические.

В первом случае в анализируемом потоке информации ищутся
так называемые сигнатуры или сценарии атак — четкие и нед-
вусмысленные признаки определенных атак. Примерами сигнатур
могут служить:
• сигнатура подбора пароля — несколько неудачных попыток ау-

тентификации с одного рабочего места;
• сигнатура сканирования портов — несколько попыток откры-

тия различных портов защищаемого сервера одним и тем же
клиентом;

Аудит и обнаружение вторжений 117

• сигнатура эксплуатации уязвимости программного обеспече-
ния — получение одного или нескольких определенных сетевых
пакетов, пришедших на определенный порт.
Эвристические правила позволяют выявлять аномальную ак-

тивность в защищаемой системе. Обычно в ходе функционирования
системы активность отдельных ее компонент примерно одинакова и
слабо меняется со временем. Если какая-то характеристика какой-
то компоненты системы резко изменилась, это воспринимается как
сигнал тревоги, например:
• если некий процесс начал потреблять заметно больше аппа-

ратных ресурсов компьютера, чем раньше, возможно, в адрес-
ное пространство этого процесса внедрилась программная за-
кладка;

• если некий компьютер генерирует необычно много исходящего
SMTP-трафика, возможно, операционная система данного ком-
пьютера поражена сетевым вирусом, осуществляющим рассыл-
ки спам-почты.
Основным достоинством эвристических анализаторов является

их способность более-менее адекватно реагировать на ранее неиз-
вестные атаки злоумышленников. Сигнатурные анализаторы, нап-
ротив, способны реагировать лишь на те атаки, которые присутст-
вуют в базе сигнатур системы обнаружения вторжений. Эта база
должна регулярно обновляться.

Основным недостатком эвристических анализаторов является
их склонность генерировать ложные тревоги. Пусть, например, на
некотором компьютере развернут популярный веб-сервер, обеспечи-
вающий большую нагрузку на процессоры компьютера. На том же
компьютере развернут и FTP-сервер, однако он посещается поль-
зователями гораздо реже и не создает существенной нагрузки на
процессоры и оперативную память. Если в какой-то момент некий
пользователь начнет скачивать с FTP-сервера большой файл, это
может привести к генерации ложной тревоги. Для того чтобы, с
одной стороны, избежать большого количества ложных тревог, а
с другой стороны, своевременно обнаруживать большинство атак,
система обнаружения вторжений, реагирующая на аномальную ак-
тивность, нуждается в тонкой и нетривиальной настройке. Свежеус-
тановленная и ненастроенная система обычно генерирует так много
тревожных сигналов, что пользы от нее почти нет.

Эвристический анализатор системы обнаружения вторжений в
общем случае не гарантирует обнаружение атаки. Большинство
атак могут быть так модифицированы, что их реализация не будет

118 Г л а в а 4

приводить к заметным всплескам активности тех или иных ком-
понент атакуемой системы. Однако модифицированные атаки, как
правило, менее эффективны, чем в оригинальном исполнении. На-
пример, программная закладка может отслеживать загруженность
процессоров и сетевого адаптера и так планировать свое функцио-
нирование, чтобы нагрузка на операционную систему, создаваемая
закладкой, не превосходила некоторого порогового значения и не
выделялась на фоне обычного функционирования системы. Но в
этом случае закладка будет работать медленнее и менее стабильно,
она может, например, досрочно прервать сеанс связи со своей кли-
ентской программой, если текущее состояние операционной системы
таково, что продолжение сеанса связи может быть обнаружено сис-
темой обнаружения вторжений.

В настоящее время сигнатурные и эвристические анализаторы
часто используются в совокупности. В будущем, с ростом «интел-
лектуальности» систем обнаружения вторжений, эвристические ана-
лизаторы, вероятно, станут основным видом анализаторов, приме-
няемых в системах обнаружения вторжений. Пока же в практичес-
кой работе основная нагрузка ложится на сигнатурные анализаторы,
а эвристические используются главным образом в пассивном режи-
ме, когда решение о том, была ли выявлена атака или имела место
ложная тревога, принимает человек.

Пассивные системы обнаружения вторжений просто записыва-
ют в специальный журнал результаты анализа информации, полу-
ченной от сенсоров. Реакция на зафиксированные атаки осуществ-
ляется администратором системы вручную.

Активные системы обнаружения вторжений (их часто называют
системами предотвращения вторжений, intrusion prevention
systems, IPS) отличаются от пассивных тем, что при обнаруже-
нии опасности самостоятельно предпринимают ответные действия.
Иногда эти действия бывают довольно сложными, например, в от-
вет на зафиксированную сетевую атаку может осуществляться ав-
томатическая перенастройка пакетного фильтра или маршрутиза-
тора. В отдельных случаях активные системы обнаружения втор-
жений могут проводить сканирование или даже контратаку систем-
нарушителей. Впрочем, последняя возможность на практике при-
меняется очень редко, поскольку ее реализация может приводить к
неспровоцированной атаке чужой системы из-за ошибки эвристичес-
кого анализатора или даже к «битве титанов», когда две активные
системы обнаружения вторжений устраивают настоящую дуэль в
сетевом пространстве.

Аудит и обнаружение вторжений 119

В любом случае, является ли система обнаружения вторжений
активной или пассивной, узловой или сетевой, ее сопровождение
требует от администраторов защищаемой сети довольно больших
усилий и высокой квалификации. Малоквалифицированный адми-
нистратор, обслуживающий систему обнаружения вторжений, как
правило, постепенно отключает функции системы, смысл которых
ему неясен, и со временем IDS приходит в состояние, когда анализа-
тор игнорирует большую часть тревожных сигналов, поступающих
от сенсоров. Такая система обнаружения вторжений не приносит
никакой пользы и даже, напротив, приносит вред, поскольку соз-
дает у пользователей и администраторов системы ложное чувство
защищенности.

Несмотря на свою высокую эффективность, системы обнару-
жения вторжений не являются панацеей, гарантированно пресека-
ющей все атаки злоумышленников. Это обусловлено следующими
факторами.
• Как и любое программное или программно-аппаратное средство

обеспечения информационной безопасности, система обнаруже-
ния вторжений не обладает полноценным интеллектом и пото-
му не всегда способна принимать адекватные решения в слож-
ных ситуациях. Любая система обнаружения вторжений может
быть обманута достаточно квалифицированным и удачливым
злоумышленником.

• Как и любое программное или программно-аппаратное средс-
тво обеспечения информационной безопасности, система обна-
ружения вторжений нуждается в постоянном сопровождении
администратора безопасности. Журналы, создаваемые систе-
мой обнаружения вторжений, должны регулярно просматрива-
ться и анализироваться человеком, обладающим, в отличие от
системы обнаружения вторжений, полноценным интеллектом.
Настройки системы обнаружения вторжений должны регуляр-
но корректироваться, не допуская, с одной стороны, фактов не-
замеченных вторжений злоумышленников в защищаемую систе-
му, а с другой стороны, чрезмерного количества ложных тревог,
затрудняющих функционирование защищаемой системы.

• Возможности системы обнаружения вторжений по автомати-
ческой реакции на зафиксированные угрозы весьма ограничен-
ны. «Чрезмерно активная» конфигурация системы обнаруже-
ния вторжений может приводить к тому, что нарушитель смо-
жет спровоцировать систему обнаружения вторжений на несан-
кционированные действия, в лучшем случае парализующие ра-

120 Г л а в а 4

боту защищаемой системы, а в худшем — негативно воздейству-
ющие на другие системы, не имеющие никакого отношения ни
к защищаемой системе, ни к нарушителю.

• Ни одна система обнаружения вторжений не способна обнару-
живать абсолютно любые атаки, для любой системы обнаруже-
ния вторжений существуют области защищаемой системы, на-
ходящиеся вне пределов видимости ее сенсоров. Так, в 2001 го-
ду с выходом новой версии Microsoft Internet Information Server
обнаружилось, что ни одна из существовавших на тот момент
систем обнаружения вторжений не способна правильно декоди-
ровать новый формат заголовков HTTP-пакетов, используемый
данным сервером. В результате веб-серверы Microsoft IIS, об-
новленные до новой версии, на некоторое время оказались без-
защитны для атак, защита от которых реализуется средствами
систем обнаружения вторжений.

• Как и любой программный продукт, система обнаружения втор-
жений может иметь уязвимости, позволяющие нарушителю по-
лучать несанкционированный доступ к ресурсам компьютера,
на котором установлено данное программное обеспечение.

4.3. Аудит в Windows
Для просмотра журнала аудита в Windows используется ос-

настка Event Viewer консоли администрирования, эту же оснаст-
ку можно использовать и для просмотра других системных журна-
лов. Просматривать журнал аудита разрешено только пользовате-
лям, обладающим привилегией аудитора. Эти ограничения доступа
действуют и в том случае, когда системный раздел жесткого дис-
ка отформатирован с использованием файловой системы, отличной
от NTFS. Все пользователи, которые могут читать журнал аудита,
могут и очищать его. Факт очистки журнала регистрируется сразу
после очистки.

Размер журнала аудита ограничен, максимальный размер сос-
тавляет по умолчанию от 512К в Windows NT 4 до 20М в Windows 7.
Администратор операционной системы может менять это значение.
Также администратор может определить поведение операционной
системы при переполнении журнала аудита. По умолчанию события
перезаписываются по мере необходимости, начиная с самых старых.
В политике безопасности может быть выставлена опция «аварийно
завершать работу операционной системы при переполнении журна-
ла аудита». В этом случае после перезагрузки операционной систе-
мы работать с ней сможет только администратор. Чтобы вернуть

Аудит и обнаружение вторжений 121

операционную систему в обычный многопользовательский режим,
администратор должен очистить журнал аудита, сбросить в реестре
соответствующий флаг и перезагрузить систему.

Добавлять записи в журнал аудита могут только субъекты дос-
тупа, обладающие соответствующей привилегией. По умолчанию
эта привилегия предоставляется только псевдопользователю SYS-
TEM, менять данную установку не следует. Если предоставить дан-
ную привилегию какому-то физическому пользователю, он тем са-
мым получит возможность записывать в журнал аудита произволь-
ную информацию, в том числе и компрометирующую других поль-
зователей.

Множество событий, информация о которых записывается в
журнал аудита, определяется политикой аудита, которую опреде-
ляют пользователи-аудиторы. Windows позволяет регистрировать
в журнале аудита события следующих категорий:
• вход/выход пользователя в/из системы;
• аутентификация пользователя∗;
• доступ субъектов к локальным объектам;
• доступ субъектов к объектам активного каталога;
• использование субъектами доступа опасных привилегий;
• изменения в списке пользователей;
• изменения в политике безопасности;
• системные события;
• запуск и завершение процессов.

Для каждого класса событий могут регистрироваться либо то-
лько успешные события, либо только неуспешные, либо и те, и дру-
гие, либо никакие.

По умолчанию в Windows, начиная с Windows Vista, реализу-
ются следующие настройки политики аудита:
• на контроллерах доменов:
• вход/выход пользователя в/из системы — только успешные по-

пытки;
• аутентификация пользователя — только успешные попытки;
• доступ субъектов к объектам активного каталога — только ус-

пешные попытки;

∗ В доменах Windows аутентификация пользователя может осущес-
твляться на компьютере, отличном от того, с которым данный пользова-
тель начинает сеанс работы. При аутентификации пользователя домена
на рабочей станции подсистема аудита рабочей станции генерирует сооб-
щение в категории «вход/выход пользователя», а подсистема аудита конт-
роллера домена — сообщение в категории «аутентификация пользователя».

122 Г л а в а 4

• изменения в списке пользователей — только успешные попытки;
• изменения в политике безопасности — только успешные по-

пытки;
• системные события — только успешные попытки;
• на рабочих станциях:
• вход/выход пользователя в/из системы — только успешные по-

пытки;
• аутентификация пользователя — только успешные попытки;

В доменах Windows политика аудита интегрирована в группо-
вую политику и наследуется в соответствии с правилами наследо-
вания групповой политики.

Порядок регистрации событий при доступе субъектов к объек-
там определяется не только политикой аудита, но и атрибутами за-
щиты объекта. Как уже упоминалось выше, в состав дескриптора
защиты объекта может входить системный список контроля досту-
па (SACL), определяющий порядок регистрации событий аудита при
доступе субъектов к данному объекту. Так же, как и DACL, SACL
представляет собой список переменной длины, элементами которо-
го являются ACE, имеющие точно такой же формат, как и ACE,
входящие в состав DACL.

В отличие от ACE из DACL, ACE в SACL всегда имеют тип
«регистрирующий ACE» (system audit ACE). Для объектов актив-
ного каталога также поддерживается тип «объектно-специфичный
регистрирующий ACE». Кроме того, для всех объектов поддер-
живается (хотя эта возможность недокументированна) system audit
compound ACE, позволяющий отдельно описывать параметры ре-
гистрации доступа к объектам для каждой пары «субъект-клиент
+ субъект-сервер».

Элементы контроля доступа, входящий в SACL, может иметь
все флаги, которые может иметь ACE, входящий в DACL. Кроме
того, ACE из SACL могут иметь еще два флага:
• SUCCESSFUL ACCESS ACE FLAG (s) — если этот флаг уста-

новлен, будут регистрироваться в журнале аудита все успешные
обращения к объекту субъекта, идентификатор которого запи-
сан в ACE, по любому из методов доступа, перечисленных в
маске доступа ACE;

• FAILED ACCESS ACE FLAG (f) — если этот флаг установлен,
будут регистрироваться в журнале аудита все неуспешные об-
ращения к объекту субъекта, идентификатор которого записан
в ACE, по любому из методов доступа, перечисленных в маске
доступа ACE.

Аудит и обнаружение вторжений 123

Если в ACE установлены оба флага, регистрируются любые об-
ращения субъекта к объекту по перечисленным методам доступа,
как успешные, так и неуспешные. Если в ACE установлен флаг i,
при доступе субъектов к объекту ACE игнорируется.

Поскольку все ACE в SACL однотипны, порядок их взаимного
расположения не имеет значения.

Если в дескрипторе защиты объекта SACL отсутствует, обраще-
ния субъектов к этому объекту не регистрируются.

При создании нового объекта SACL назначается объекту по тем
же правилам, что и DACL. При наследовании ACE флаги s и f ос-
таются неизменными.

Для того чтобы событие, связанные с доступом субъекта к объ-
екту, было зафиксировано в журнале аудита, необходимо одновре-
менное выполнение следующих двух условий:
• Политика аудита операционной системы допускает регистрацию

в журнале аудита событий, связанных с успешным (или, соот-
ветственно, неуспешным) доступом субъектов к объектам.

• SACL объекта содержит хотя бы один ACE, в котором:
• идентификатор субъекта относится к субъекту, открывающему

объект;
• установлен флаг s (или, соответственно, f) и не установлен

флаг i;
• после отображения отображаемых прав доступа пересечение

маски доступа ACE и маски доступа, содержащей права, зап-
рашиваемые субъектом, непусто.
Таким образом, глобальные настройки политики аудита в отно-

шении доступа субъектов к объектам играют роль фильтра, позво-
ляющего временно запретить регистрацию успешных или неуспеш-
ных попыток доступа всех субъектов ко всем объектам операцион-
ной системы.

Начиная с Windows Vista, администратор может привязать к
каждому типу событий аудита одну или несколько задач следую-
щего вида:
• вывести текстовое сообщение в текущую терминальную сессию;
• отправить электронное письмо на заданный адрес;
• запустить заданную программу.

К сожалению, во всех трех случаях подробные сведения о заре-
гистрированном событии не передаются задаче в качестве парамет-
ров. Фактически, данный механизм позволяет интерактивно опо-
вещать администратора безопасности только о факте наступления

124 Г л а в а 4

того или иного события (например, неудачной попытке входа поль-
зователя в систему), но подробности события (с какой учетной за-
писью и каким сетевым адресом оно связан) администратор должен
будет выяснять самостоятельно, лично просмотрев журнал аудита.

Начиная с Windows Vista, в подсистеме аудита Windows под-
держивается механизм, позволяющий автоматически перенаправ-
лять записи о событиях определенных видов с одних компьютеров
на другие. Перенаправление записей аудита реализуется посредс-
твом так называемых подписок, создаваемых с помощью оснастки
Event Viewer консоли администрирования. Для управления подпис-
ками необходимо иметь полномочия администратора как в системе-
источнике, так и в системе-сборщике. Кроме того, может потребо-
ваться дополнительная настройка пакетного фильтра.

Средства автоматического обнаружения вторжений в современ-
ных версиях Windows отсутствуют. Microsoft ISA Server, согласно
документации, включает в себя встроенную систему обнаружения
вторжений, но она настолько примитивна, что вряд ли ее можно
всерьез относить к данному классу средств защиты информации.

4.4. Аудит в UNIX
В современных операционных системах семейства UNIX реали-

зуются два принципиально различных подхода к организации ауди-
та. Первый из них основан на применении традиционных для UNIX
демонов регистрации событий syslogd и klogd, изначально разра-
ботанных не столько для поддержания безопасности операционной
системы, сколько для выявления и устранения ошибок конфигу-
рирования, сетевых неполадок, взаимных несовместимостей паке-
тов программного обеспечения и т. п. Второй, альтернативный под-
ход появился сравнительно недавно, он основан на переносе в сре-
ду UNIX архитектуры и интерфейсов подсистемы аудита, изначаль-
но свойственных операционным системам семейства Windows. Если
UNIX-система включена в состав гетерогенной сети, большинство
узлов которой работают под управлением Windows, единообразное
построение подсистем аудита всех операционных систем становится
серьезным преимуществом, поскольку позволяет, например, расп-
ространять политики аудита на большие подмножества узлов сети
независимо от того, под управлением какой операционной системы
работает каждый конкретный узел того или иного подмножества.
В состав большинства современных UNIX-систем могут включаться
обе подсистемы аудита, при этом они могут работать как независимо
одна от другой, так и во взаимодействии.

Аудит и обнаружение вторжений 125

4.4.1. syslogd, klogd

Вначале мы рассмотрим первый, более традиционный и более
часто применяемый подход к организации аудита в UNIX, основан-
ный на использовании демонов syslofd и klogd. Регистрация собы-
тий, связанных с безопасностью операционной системы, не отделя-
ется этими демонами от регистрации других системных событий, по-
этому при описании данного подхода мы будем использовать термин
«аудит» расширенно — как процедуру регистрации любых событий,
имевших место в ходе функционирования операционной системы и
не обязательно непосредственно связанных с ее безопасностью.

Демон syslogd предоставляет услуги прикладным и системным
программам, демон klogd реализует аудит операций, выполняемых
ядром операционной системы. Основным назначением этих демонов
является поддержка единой в масштабах операционной системы по-
литики аудита, предписывающей выполнение определенных дейст-
вий для каждого типа регистрируемых событий. Каждый раз, когда
прикладная или системная программы выполняет потенциально ау-
дируемое действие, информация об этом действии передается демо-
ну syslogd, тот сверяется с текущей политикой аудита и принимает
решение о порядке регистрации данного события. Получение ин-
формации демоном syslogd обычно реализуется через сокет /dev/log
(для локальных клиентов) или UDP-порт 514 (для удаленных кли-
ентов). Демон klogd получает информацию через специальный файл
/proc/kmsg или системный вызов ядра sys syslog. Идентификаторы
процессов демонов аудита хранятся в десятичном виде в текстовых
файлах /var/run/syslogd.pid и /var/run/klogd.pid соответственно.

Действующая политика аудита описывается текстовым файлом
/etc/syslog.conf. Каждая строка этого файла описывает одно эле-
ментарное правило политики аудита и включает в себя два основ-
ных поля:
• селектор — описывает условия применимости данного правила;
• действие — описывает действие, которое должно быть выпол-

нено в результате применения данного правила.
Поле селектора в общем случае имеет следующий вид:

⟨источник⟩.⟨модификатор⟩ ⟨приоритет⟩
Подполе ⟨источник⟩ описывает подсистему операционной сис-

темы, которая обращается к демону syslogd с намерением зарегис-
трировать то или иное событие. Данное подполе может принимать
следующие значения:

auth — клиентская часть подсистемы аутентификации;

126 Г л а в а 4

authpriv — серверная часть подсистемы аутентификации;
cron — демон автоматического запуска заданных процессов в

заданное время;
daemon — все другие демоны, кроме явно перечисленных в дан-

ном списке;
ftp — FTP-сервер;
kern — ядро операционной системы;
lpr — сервер печати;
mail — сервер электронной почты;
mark — предназначено для внутреннего использования;
news — NNTP-сервер;
security — синоним для auth, считается устаревшим;
syslog — сам демон аудита;
user — любая прикладная программа;
uucp — демон UUCP;
local0-local7 — зарезервированы;
* — любой источник.
В одном селекторе можно указывать несколько источников че-

рез запятую.
Подполе ⟨модификатор⟩ может принимать следующие значе-

ния:
(не заполнено) — данная строка описывает реакцию на события,

имеющие приоритет, больший или равный указанному;
= — данная строка описывает реакцию на события, имеющие

приоритет, точно равный указанному;
! — данная строка описывает реакцию на события, имеющие

приоритет, меньший указанного;
!= — данная строка описывает реакцию на события, имеющие

приоритет, отличный от указанного.
Подполе ⟨приоритет⟩ может принимать следующие значения

(перечислены в порядке убывания значимости):
emerg, panic — операционная система вышла из строя, после

регистрации данного события произойдет аварийное завершение ее
работы;

alert — критический сбой, требующий немедленной реакции;
crit — критический сбой;
err, error — сбой;
warning, warn — предупреждение;
notice — важное информационное сообщение;
info — информационное сообщение;
debug — отладочное сообщение.

Аудит и обнаружение вторжений 127

Также поддерживаются два специальных значения приоритета:
* — любой приоритет;
none — «никакой» приоритет, предназначено для описания от-

ношений типа «все, кроме».
В одной строке файла syslogd.conf можно описывать несколько

селекторов, они разделяются точкой с запятой (;).
Поле действия описывает конкретное действие, которое должен

предпринять демон syslogd при регистрации события аудита, соот-
ветствующего указанному селектору. Поддерживаются следующие
типы действий:
• запись информации о событии в файл — указывается имя фай-

ла. Обычно сразу после записи информации о событии выпол-
няется принудительный сброс дискового кэша для данного фай-
ла, этим гарантируется сохранение информации в случае вне-
запного аварийного завершения работы операционной системы.
Принудительный сброс кэша можно отменить для любого кон-
кретного файла, указав перед именем файла символ – (минус);

• выдача информации о событии на терминал или консоль — ука-
зывается имя файла в директории /dev, соответствующее дан-
ному терминалу и консоли;

• запись информации о событии в указанный именованный ка-
нал — указывается имя канала, которому предшествует символ
«|»;

• перенаправление информации о событии демону syslogd другого
компьютера (514 порт UDP) — указывается имя компьютера, ко-
торому предшествует символ «@». При неаккуратном описании
порядка перенаправления сообщений аудита с одних компьюте-
ров на другие могут возникать циклы, что может приводить к
перегрузке сети и переполнению файлов аудита;

• интерактивное оповещение о событии одного или нескольких
пользователей — указываются имена пользователя через запя-
тую;

• интерактивное оповещение о событии всех пользователей, рабо-
тающих в данный момент с операционной системой — указыва-
ется одиночный символ «*».
Рассмотрим несколько примеров описания политик аудита в

файле syslog.conf.
Все критические сообщения, кроме исходящих от ядра,

записывать в файл /var/adm/critical

*.crit;kern.none /var/adm/critical

Все сообщения от ядра записывать в файл /var/adm/kernel

kern.* /var/adm/kernel

128 Г л а в а 4

Критические сообщения от ядра также выводить на консоль и

перенаправлять на компьютер netaud

kern.crit /dev/console

kern.crit @netaud

Не очень важные сообщения от ядра записывать в файл

/var/adm/kernel-info

kern.!err /var/adm/kernel-info

Информационные сообщения от почтового сервера выводить на

двенадцатый терминал

mail.=info /dev/tty12

Все остальные сообщения от почтового сервера записывать в файл

/var/adm/mail

mail.*;mail.!=info /var/adm/mail

Информационные соообщения от почтового сервера и NNTP-сервера

записывать в файл /var/adm/info

mail,news.=info /var/adm/info

Все остальные информационные сообщения записывать в файл

/var/log/messages

*.info mail,news.none /var/log/messages

Все сообщения с приоритетами info и notice, кроме исходящих от

почтового сервера, записывать в файл /var/log/messages

.=info;.=notice;mail.none /var/log/messages

Об аварийном завершении работы операционной системы

интерактивно оповещать всех пользователей

*.emerg *

О критических сбоях, требующих немедленной реакции,

интерактивно оповещать пользователей root и vadim

*.alert root,vadim

Перенаправлять все сообщения на компьютер netaud

. @netaud

Отладочные сообщения, кроме исходящих от серверной части

подсистемы аутентификации, записывать в файл /var/log/debug,

не заботясь о сохранности записываемой информации

*.debug;authpriv.none -/var/log/debug

Отладочные сообщения ядра также направлять в именованный канал

/usr/adm/debug

kern.debug |/usr/adm/debug

В большинстве UNIX-систем большая часть сообщений аудита
традиционно записывается в файл /var/log/messages или /var/adm/
log/messages. Для хранения сообщений о попытках аутентификации
традиционно используется файл /var/log/auth.log или (например, в
Solaris) /var/adm/loginlog.

При обновлении файла syslog.conf новая политика аудита всту-
пает в силу только после перезагрузки демона syslogd или после то-
го, как этот демон получит сигнал SIGHUP. Прикладные программы

Аудит и обнаружение вторжений 129

UNIX интерпретируют данный сигнал как обрыв связи удаленного
клиента с терминалом и обычно, получив его, аварийно завершают
работу, но демон syslogd воспринимает сигнал SIGHUP иначе — как
требование обновить политику аудита.

Журналы аудита UNIX представляют собой обычные текстовые
файлы. Их просмотр и анализ может проводиться как обычными
утилитами просмотра текстов, так и более продвинутыми програм-
мными средствами, облегчающими работу с аудитом. В отличие
от Windows, в UNIX нет встроенных средств, позволяющих жес-
тко ограничивать максимальные размеры журналов аудита. Не-
адекватная политика аудита в UNIX потенциально может приво-
дить к исчерпанию свободного места на жестких дисках компьютера.
Для предотвращения данной угрозы могут применяться следующие
меры:
• ограничение доступа к 514 порту UDP пакетным фильтром;
• размещение файлов аудита на отдельном разделе жесткого

диска;
• запуск демона syslogd от имени псевдопользователя с ограни-

ченными полномочиями.
Удаление из файлов аудита устаревшей информации традици-

онно реализуется путем регулярного запуска демоном cron специа-
льной утилиты logrotate, конфигурация которой описывается фай-
лом /etc/logrotate.conf.

Серьезным недостатком подсистемы аудита UNIX является то,
что доступ к демону syslogd в общем случае предоставляется любым
программам, как системным, так и прикладным. При этом клиент-
ская программа не только передает демону текст сообщения, но и
самостоятельно указывает источник и приоритет регистрируемого
события. Более того, существует специальная утилита командной
строки logger, позволяющая обычному непривилегированному по-
льзователю передать демону syslogd произвольную информацию от
имени произвольной подсистемы операционной системы и присвои-
ть этой информации произвольный уровень значимости, например:

logger -p kernel.emerg virus: hard drive formatting started

В приведенном примере сообщение, переданное демону syslogd,
является очевидной шуткой. Однако ничто не мешает пользовате-
лю-нарушителю навязывать демону аудита не столь безобидную ин-
формацию, например, имитировать нарушение правил безопасности
другим пользователем, к которому нарушитель испытывает непри-
язнь.

130 Г л а в а 4

4.4.2. auditd

Механизм регистрации событий, реализуемый демонами syslogd
и klogd, в основном предназначен не столько для поддержания без-
опасности системы, сколько для выявления программных и аппа-
ратных неисправностей, тестирования и отладки новых компонент
операционной системы и т. п. Применять данный механизм для ре-
гистрации событий, связанных с безопасностью системы, не очень
удобно, и в некоторых операционных системах, принадлежащих к
семейству UNIX, для этой задачи предназначен отдельный, дополни-
тельный демон аудита, которому чаще всего назначается имя auditd.
Концептуально реализации данного демона в разных UNIX-системах
обычно очень похожи на реализацию подсистемы аудита в Windows.
Однако технические детали разных реализаций могут очень сильно
отличаться одна от другой.

В операционной системе AIX демон auditd предназначается
главным образом для регистрации обращений пользователей к фай-
лам. Конфигурация демона описывается в файлах config и objects,
размещаемых в директории /etc/security/audit. Данные аудита за-
писываются либо в псевдофайл /audit/trail, либо на логическое уст-
ройство /dev/audit, для считывания данных аудита уполномочен-
ным пользователем используются специальные утилиты auditptr и
auditstream. Формат данных аудита при этом выглядит примерно
следующим образом:

event login status time command
––––––––- ––––- ––––- ––––– –––––
S NOTAUTH READ root OK Thu Nov 1 14:07:05 2012 cat

S NOTAUTH READ root OK Thu Nov 1 14:07:05 2012 cat

FILE Unlink root OK Thu Nov 1 14:07:09 2012 vi

S NOTAUTH READ root OK Thu Nov 1 14:07:09 2012 vi

S NOTAUTH READ root OK Thu Nov 1 14:07:09 2012 vi

S NOTAUTH READ root OK Thu Nov 1 14:07:09 2012 vi

S NOTAUTH WRITE root OK Thu Nov 1 14:07:13 2012 vi

FILE Unlink root OK Thu Nov 1 14:07:13 2012 vi

FILE Unlink root OK Thu Nov 1 14:07:20 2012 vi

S NOTAUTH READ ash OK Thu Nov 1 14:09:39 2012 cat

S NOTAUTH READ ash OK Thu Nov 1 14:09:39 2012 cat

В Mac OS X демон audit записывает регистрируемые данные
в один или несколько файлов, обычно расположенных в директо-
рии /var/audit. Политика аудита для данного демона описывается
конфигурационными файлами audit class, audit event, audit control
и audit user. Для каждого пользователя операционной системы по-
рядок регистрации событий, связанных с деятельностью этого по-
льзователя, задается индивидуально, кроме того, определен поря-

Аудит и обнаружение вторжений 131

док регистрации событий по умолчанию. Механизм регистрации
событий, реализуемый демоном audit в Mac OS, во многом похож
на реализацию аудита в Windows. Аналогично категориям событий
аудита в Windows, в Mac OS события аудита объединяются в так
называемые классы, при этом порядок регистрации событий отде-
льно определяется для успешных и неуспешных событий каждого
класса. Для каждого пользователя определяются так называемые
флаги аудита — битовая маска, в которой каждый бит соответствует
одному классу потенциально регистрируемых событий. По умолча-
нию в Mac OS задано 19 классов событий аудита, при этом система
их классификации запутана и не слишком удобна для практическо-
го использования.

Для некоторых событий возможно интерактивное оповещение
администратора с помощью автоматического запуска специального
скрипта audit warn, который в качестве параметра получает текс-
товую строку, содержащую описание зарегистрированного события.
По умолчанию скрипт audit warn просто записывает текущее время
и переданный ему текст в конец файла /etc/security/audit messages,
но администратор операционной системы может менять код скрип-
та произвольным образом.

Похожим образом реализован дополнительный аудит в опера-
ционной системе Astra Linux. Здесь для каждого пользователя или
группы пользователей может быть создан так называемый профи-
ль аудита (фактически, те же самые флаги аудита), описывающий
порядок регистрации событий аудита для следующих категорий:

open — открытие объекта доступа;
create — создание объекта доступа;
exec — запуск процесса;
delete — удаление объекта доступа;
chmod — изменение вектора доступа объекта;
chown — изменение владельца объекта доступа;
mount — монтирование или размонтирование файловой систе-

мы;
module — загрузка или выгрузка модуля расширения ядра опе-

рационной системы;
uid — запуск процесса с использованием механизма SUID;
gid — запуск процесса с использованием механизма SGID;
audit — изменение профиля аудита;
xattr — изменение списка доступа объекта;
mac — изменение мандатных меток объектов доступа;
cap — изменение привилегий субъекта доступа;

132 Г л а в а 4

chroot — смена корневого каталога файловой системы;
rename — переименование объекта доступа;
net — изменение сетевых настроек.
Большинство перечисленных категорий фактически представ-

ляют собой системные вызовы, при каждом выполнении которых
регистрируется либо не регистрируется соответствующее событие
аудита.

Вопросы для самопроверки
1. В чем заключается процедура аудита применительно к защищенным опе-

рационным системам?
2. Должна ли предоставляться администраторам операционной системы

привилегия работать с подсистемой аудита?
3. Какие основные требования предъявляются к подсистеме аудита опера-

ционной системы?
4. Что такое политика аудита?
5. Как часто должна корректироваться политика аудита?
6. Что представляет собой система обнаружения вторжений?
7. Какие основные элементы включает в себя архитектура системы обна-

ружения вторжений?
8. На какие основные типы делятся системы обнаружения вторжений?
9. Чем различаются сигнатурные и эвристические правила обнаружения

вторжений?
10. Каков основной недостаток применения эвристических анализаторов в

системах обнаружения вторжений?
11. Чем активные системы обнаружения вторжений отличаются от пас-

сивных?
12. Каковы основные факторы, ограничивающие эффективность систем об-

наружения вторжений?
13. К каким негативным последствиям может приводить установка чрез-

мерно активной конфигурации системы обнаружения вторжений?
14. Каким пользователям Windows разрешается работать с подсистемой

аудита операционной системы?
15. Какие категории событий аудита поддерживаются в Windows?
16. Какие элементы входят в список SACL дескриптора защиты объекта

доступа Windows, каково их назначение?
17. Какие дополнительные флаги должны быть установлены в ACE, вхо-

дящих в состав SACL, каково назначение этих флагов?
18. Какие задачи можно привязывать к событиям аудита в современных

версиях Windows?
19. Какие два механизма аудита поддерживаются в современных версиях

UNIX?
20. Для чего предназначены UNIX-демоны syslogd и klogd?
21. Как описывается текущая конфигурация демона syslogd?
22. Какие источники и приоритеты событий аудита поддерживаются в сов-

ременных версиях UNIX?
23. Какие действия могут связываться с событиями аудита в современных

версиях UNIX?

Аудит и обнаружение вторжений 133

24. Как можно интерактивно оповестить о том или ином событии, заре-
гистрированном подсистемой аудита, всех пользователей UNIX, работающих с
операционной системой в данный момент?

25. В каком формате хранятся данные в журналах аудита UNIX?
26. Какие недостатки имеет стандартная подсистема аудита UNIX?
27. Какие функции выполняет демон audit в Mac OS?
28. Какие профили аудита поддерживаются в операционной системе Astra

Linux?

5 Домены Windows

5.1. Общие сведения
Основной задачей, для решения которой предназначена домен-

ная архитектура компьютерной сети, является упрощение админис-
трирования и управления сетью.

Доменом называется совокупность компьютеров, объединен-
ных в общую сеть и разделяющих общий список пользователей и
общую политику безопасности. Учетная информация о пользовате-
лях, псевдопользователях и группах домена централизованно хра-
нится в единой базе данных. Наличие общей базы учетных записей
позволяет пользователю, единожды войдя в домен, осуществлять
доступ к любому разделяемому ресурсу данного домена∗. Если на
пользователя не наложены специальные ограничения, он может под-
ключаться к домену с любого компьютера сети.

Компьютеры, входящие в домен и работающие под управлени-
ем Windows, могут управляться централизованно. Большинство за-
дач администрирования могут выполняться администратором доме-
на со своего рабочего места в отношении любого компьютера доме-
на. В частности, администратор домена может выполнять на любом
компьютере домена следующие действия:
• создавать, удалять, переименовывать и менять атрибуты раз-

деляемых каталогов и принтеров;
• просматривать и редактировать реестр;
• создавать, удалять, загружать и выгружать драйверы и сер-

висы;
• просматривать системные журналы, включая журнал аудита.

Одним из важнейших элементов доменной архитектуры Win-
dows является база учетных записей, в которой централизованно
хранится информация о пользователях, псевдопользователях и
группах домена. Каждому компьютеру домена соответствует псев-
допользователь с именем computer name$, учетная информация

∗ Большинство возможностей, предоставляемых доменной архитек-
турой, могут быть отключены для отдельных компьютеров или пользо-
вателей. Далее везде под словами «пользователь может выполнить неко-
торое действие» подразумевается «пользователь может выполнить неко-
торое действие, если эта возможность не отключена явно».

Домены Windows 135

компьютера хранится в базе в таком же формате, как и учетная
информация пользователя.

В каждом домене Windows обязательно существует хотя бы
один сервер, называемый контроллером домена (domain control-
ler, DC). База учетных записей домена физически хранится на жес-
тком диске этого компьютера: в Windows NT — в реестре, начиная с
Windows 2000 — в специальной базе данных, называемой активным
каталогом. В роли контроллера домена может выступать только
Windows Server, рабочие станции контроллерами доменов быть не
могут.

В домене может существовать более одного контроллера, в этом
случае все контроллеры домена хранят идентичные копии (реплики)
базы учетных записей домена. Время от времени в домене выпол-
няется синхронизация реплик базы учетных записей, хранящихся
на разных контроллерах домена. В Windows NT среди контрол-
леров домена выделялся один первичный контроллер, хранящий
эталонную копию базы учетных записей. Начиная с Windows 2000,
все контроллеры домена равноправны, для синхронизации разных
копий базы учетных записей используются развитые средства реп-
ликации данных.

Членами домена могут быть любые компьютеры, операционные
системы которых способны взаимодействовать с контроллерами до-
мена. В полном объеме преимуществами доменной архитектуры мо-
гут пользоваться только компьютеры, работающие под управлением
Windows 2000 или выше, однако отдельные функции доменной ар-
хитектуры могут использоваться любыми компьютерами, програм-
мное обеспечение которых способно осуществлять информационный
обмен по сетевому протоколу SMB.

5.2. Сквозная аутентификация
Когда пользователь начинает работу с операционной системой

Windows, входящей в состав домена, пользователь указывает в со-
ответствующем поле формы ввода домен, в котором зарегистриро-
вана учетная запись. Если пользователь указал в качестве домена
имя локального компьютера, вход в домен не производится, аутен-
тификация выполняется с использованием локальной базы учетных
записей и пользователь работает с операционной системой, как если
бы рабочая станция представляла собой изолированный компьютер.
В дальнейшем всякий раз, когда пользователь захочет обратиться к
ресурсам другого компьютера того же домена, пользователь должен
будет пройти повторную аутентификацию.

136 Г л а в а 5

Если же пользователь, входя в систему, указал, что его учетная
запись зарегистрирована в домене, операционная система выполняет
сквозную или транзитную аутентификацию. Сквозную аутен-
тификацию может осуществлять не только Windows, но и любая
другая операционная система, в состав которой входит соответству-
ющий сетевой клиент.

Если пользователь не указал, где зарегистрирована его учетная
запись, операционная система вначале пытается провести локаль-
ную аутентификацию, а если учетная запись пользователя отсутст-
вует в локальной базе — сквозную.

Сквозная аутентификация выполняется следующим образом.
1. Рабочая станция устанавливает сетевое соединение с кон-

троллером домена. Если ни один контроллер домена недоступен,
сквозная аутентификация невозможна.

2. Осуществляется взаимная аутентификация рабочей станции
и контроллера домена. Псевдопользователь, соответствующий ра-
бочей станции, проходит аутентификацию на контроллере домена,
а псевдопользователь, соответствующий контроллеру домена, про-
ходит аутентификацию на рабочей станции. Если взаимная аутен-
тификация компьютеров невозможна (например, если контроллер
домена подменен нарушителем), сквозная аутентификация пользо-
вателя также невозможна.

3. Рабочая станция и контроллер домена договариваются о про-
токоле, по которому будет передаваться идентификационная и ау-
тентификационная информация аутентифицирующегося пользова-
теля. Если договориться невозможно (например, если в домене зап-
рещена открытая передача по сети аутентификационной информа-
ции, а программное обеспечение рабочей станции не поддерживает
шифрование паролей), сквозная аутентификация невозможна.

4. Идентификационная и аутентификационная информация по-
льзователя, проходящего аутентификацию, пересылается контрол-
леру домена. Если в домене используется протокол аутентификации
Kerberos (начиная с Windows 2000, он используется почти всегда),
данный шаг алгоритма включает в себя длинную и нетривиальную
последовательность запросов и ответов, при этом используется ве-
сьма сложное шифрование.

5. Контроллер домена проводит аутентификацию пользователя
с использованием данных, хранящихся в базе учетных записей доме-
на. Если аутентификация прошла неуспешно (например, пользова-
тель ввел неверный пароль или пользователю запрещено входить в

Домены Windows 137

домен с данного компьютера), рабочая станция получает от контрол-
лера домена отрицательный ответ и аутентификация прерывается.

6. Если аутентификация прошла успешно, контроллер домена
высылает рабочей станции учетную информацию пользователя, не-
обходимую для формирования его маркера доступа. Рабочая стан-
ция формирует маркер доступа и на этом аутентификация завер-
шается.

Из вышеприведенного алгоритма видно, что сквозная аутенти-
фикация в доменах Windows защищена от навязывания нарушите-
лем ложного сервера. Если нарушитель каким-то образом отклю-
чит от сети контроллер домена и подключит вместо него свой ком-
пьютер, отвечающий на те же запросы, рабочая станция распознает
подмену, поскольку компьютер нарушителя не сможет пройти вза-
имную аутентификацию компьютеров (чтобы это стало возможным,
нарушитель должен иметь доступ к базе учетных записей домена, а
тогда отпадает необходимость в данной атаке).

Единственное, что нарушитель может навязать рабочей стан-
ции и котроллеру домена, реализующим сквозную аутентификацию
некоторого пользователя — выбор алгоритма, по которому аутенти-
фикационная информация пользователя будет передаваться по се-
ти. Если в обеих операционных системах, участвующих в инфор-
мационном обмене, нет никаких ограничений на алгоритм передачи
аутентификационной информации, нарушитель может спровоциро-
вать передачу пароля по сети в открытом виде, без шифрования.
Однако начиная с Windows NT 4.0 SP4, открытая передача паро-
ля по сети по умолчанию запрещена. Самое большее, чего может
добиться нарушитель в таких системах — заставить рабочую стан-
цию отправить аутентификационную информацию по устаревшему
протоколу LanMan, более уязвимому в отношении подбора паролей.
Однако начиная с Windows 2000 даже это, как правило, невозможно.

Если ни один из контроллеров домена не в состоянии обслу-
жить запрос рабочей станции, сквозная аутентификация невозмож-
на. Этот факт существенно снижает устойчивость работы сети. На-
пример, при выходе из строя сетевого коммутатора ни один пользо-
ватель домена не может войти ни на один из компьютеров, входящих
в состав данного сегмента, обслуживаемого данным коммутатором.
Поскольку пользователи сети обычно не имеют локальных учетных
записей на рабочих станциях домена (в обычном режиме работы се-
ти это просто не нужно), данная ситуация фактически парализует
работу сети.

138 Г л а в а 5

Для исключения подобных ситуаций в Windows поддерживает-
ся кэширование аутентификационной информации. После каждого
успешного входа пользователя в домен аутентификационная инфор-
мация пользователя сохраняется в зашифрованном виде в локаль-
ном реестре рабочей станции. В дальнейшем, когда пользователь
пытается войти в систему и ни один из контроллеров домена не в
состоянии выполнить сквозную аутентификацию, аутентификация
пользователя осуществляется с использованием кэшированных ау-
тентификационных данных.

Кэширование аутентификационной информации может быть
отключено администратором операционной системы. Некоторые эк-
сперты в области компьютерной безопасности рекомендуют отклю-
чать кэширование аутентификационных данных, поскольку нали-
чие зашифрованного образа аутентификационной информации в ре-
естре рабочей станции упрощает злоумышленнику получение исход-
ных данных для дальнейшего подбора аутентификационной инфор-
мации пользователя. Однако в большинстве случаев снижение за-
щищенности аутентификационных данных пользователей от подбо-
ра вполне компенсируется повышением устойчивости работы сети.

Так же, как и на отдельно стоящем компьютере Windows, в до-
менах Windows могут существовать группы пользователей. В груп-
пы пользователей домена (глобальные группы) могут входить толь-
ко пользователи домена, пользователи отдельных компьютеров до-
мена в группы домена входить не могут. Однако локальные группы
отдельных компьютеров домена могут включать в себя пользовате-
лей домена и даже группы, зарегистрированные в домене. Если
локальная группа, зарегистрированная на некотором компьютере
домена, включает в себя в качестве подгруппы глобальную груп-
пу, зарегистрированную в домене, то считается, что на данном ком-
пьютере все пользователи домена, входящие в глобальную группу,
тем самым входят и в соответствующую локальную группу данного
компьютера. Список пользователей, входящих в локальную группу,
составляется заново при каждой авторизации пользователя, этим
гарантируется, что в маркер доступа авторизуемого пользователя
будет внесена актуальная информация о его членстве в локальных
и глобальных группах.

Когда пользователь домена авторизуется на компьютере, вхо-
дящем в состав домена, пользователь получает права и привилегии,
предоставленные ему как:
• пользователю домена;
• члену локальных групп данного компьютера;

Домены Windows 139

• члену глобальных групп домена;
• члену глобальных групп домена, являющихся подгруппами ло-

кальных групп данного компьютера.
Если пользователю на данном компьютере не назначены ника-

кие полномочия, пользователь получает полномочия, предоставлен-
ные группе Everyone.

Описанная схема назначения полномочий позволяет гибко и
централизованно управлять политикой безопасности в рамках всего
домена. Например, если внести некоторого пользователя в группу
домена Domain Admins, пользователь тем самым включается в груп-
пу Administrators на всех компьютерах домена, на которых группа
Domain Admins является подгруппой группы Administrators (данное
включение устанавливается по умолчанию при включении рабочей
станции Windows в домен).

С другой стороны, если имеется необходимость реализовать на
некотором компьютере домена политику безопасности, существен-
но отличающуюся от политики безопасности домена, это легко мо-
жет быть сделано путем изменения порядка включения глобаль-
ных групп пользователей домена в локальные группы пользовате-
лей данного компьютера. В вырожденном случае возможна ситуа-
ция, когда в формальном описании локальной политики безопасно-
сти компьютера не упоминается ни один из субъектов, зарегистриро-
ванных в домене, и, фактически, данный компьютер входит в домен
чисто номинально — политика безопасности операционной системы
данного компьютера никак не зависит от политики безопасности,
принятой в домене.

Начиная с Windows 2000, в группы могут включаться не только
пользователи, но и компьютеры домена (фактически — псевдополь-
зователи, соответствующие компьютерам).

5.3. Отношения доверия
Между доменами Windows, функционирующими в одной физи-

ческой сети, могут быть установлены отношения доверия. Если
домен A доверяет домену B, это означает, что каждый пользователь
домена B имеют доступ ко всем ресурсам домена A, за исключением
тех ресурсов, доступ к которым явно запрещен данному конкретно-
му пользователю.

В Windows NT отношения доверия были односторонними, т. е.
из того, что домен A доверяет домену B, не следовало, что домен
B доверяет домену A. Для того чтобы установить между доменами

140 Г л а в а 5

двусторонние отношения доверия, требовалось создать пару однос-
торонних отношений доверия, направленных навстречу друг другу.
Отношения доверия в Windows NT не были транзитивными, т. е. ес-
ли домен A доверяет домену B, а домен B доверяет домену C,. из
этого не следовало, что домен A доверяет домену C.

Начиная с Windows 2000, домены могут быть объединены в еди-
ный лес, в котором все домены доверяют друг другу. Важно заме-
тить, что Windows 2000 содержит развитые средства управления
полномочиями пользователей в разных доменах и поэтому доверие
всех всем вовсе не означает всеобщей вседозволенности, а означает
лишь, что каждый пользователь имеет возможность обращаться ко
всем ресурсам сети, к которым ему явно разрешен доступ.

При необходимости администратор леса доменов Windows 2000/
2003/2008 может устанавливать и отношения доверия «в стиле NT»,
но на практике эта возможность почти не используется.

Каждому домену в лесу соответствует псевдопользователь, ис-
пользуемый для взаимной аутентификации контроллерами доверя-
ющих друг другу доменов. Любое обращение контроллера одного
домена к контроллеру другого домена начинается с взаимной аутен-
тификации этих компьютеров, что делает практически невозможной
подмену контроллера домена и навязывание неверной информации
контроллерам других доменов. В маленьком лесу каждый конт-
роллер домена хранит у себя эталонный образ аутентификационных
данных всех других контроллеров домена. В большом лесу каждый
контроллер домена хранит у себя лишь аутентификационные дан-
ные «ближайших соседей», а взаимная аутентификация с контрол-
лером «далекого» домена осуществляется путем выстраивания це-
почки, состоящей из контроллеров доменов, при этом каждая пара
соседних в цепочке контроллеров способна выполнить взаимную ау-
тентификацию, не прибегая к посредничеству других компьютеров.

Пусть пользователь домена A пытается войти в операционную
систему рабочей станции, входящей в состав домена B, доверяющего
домену A. Сквозная аутентификация в этом случае осуществляется
следующим образом.

1. Рабочая станция устанавливает сетевое соединение с конт-
роллером домена B.

2. Рабочая станция передает идентификационные и аутентифи-
кационные данные пользователя, входящего в систему, контроллеру
домена B. Взаимная аутентификация рабочей станции и контролле-
ра домена, а также выбор протокола передачи данных происходят

Домены Windows 141

точно так же, как и в случае сквозной аутентификации в одном
домене.

3. Контроллер домена B передает идентификационные и ау-
тентификационные данные пользователя контроллеру домена A (ес-
ли необходимо, перед этим выполняется взаимная аутентификация
контроллеров доменов A и B).

4. Контроллер домена A проводит аутентификацию пользова-
теля с использованием информации, хранящейся в его базе учетных
записей. Результаты аутентификации передаются контроллеру до-
мена B.

5. Контроллер домена B перенаправляет результат аутентифи-
кации пользователя на рабочую станцию, с которой непосредственно
работает пользователь.

Если домен A доверяет домену B, то на каждом компьютере
домена A права и привилегии могут назначаться следующим субъ-
ектам доступа:
• локальным пользователям, зарегистрированным на данном ком-

пьютере;
• локальным группам, зарегистрированным на данном компью-

тере;
• пользователям домена A;
• пользователям домена B;
• группам домена A;
• группам домена B.

5.4. Активный каталог
Начиная с Windows 2000, иерархическая база учетных записей

SAM преобразована в полнофункциональную распределенную ба-
зу данных, основанную на модели данных X.500 и называемую ак-
тивным каталогом (active directory, AD). Большинство операций
над активным каталогом выполняются в контексте процесса-сервера
lsass.exe, также отвечающего за аутентификацию, аудит и криптог-
рафические функции и являющегося ядром подсистемы безопасно-
сти Windows.

В общем случае каталог — это база данных, оптимизированная
для ситуации, когда обновления базы происходят много реже, чем
получение информации из базы. Активный каталог Windows предс-
тавляет собой частный случай общего понятия каталога. На каждом
контроллере домена хранится своя копия активного каталога, эти

142 Г л а в а 5

копии регулярно синхронизируются между собой. Место физичес-
кого хранения файлов активного каталога указывается администра-
тором в ходе установки сервисов активного каталога, в большинстве
конфигураций предлагается путь по умолчанию %windir%\SYSVOL.

Информация, хранящаяся в активном каталоге, не ограничива-
ется одними только учетными записями пользователей. В общем
случае в активном каталоге могут храниться любые данные, струк-
турированные в соответствии с требованиями формата базы данных.

Данные, хранящиеся в активном каталоге, рассматриваются как
совокупность объектов, имеющих атрибуты (подобъекты), при этом
набор атрибутов объекта определяется типом объекта. Подобъекты
объекта могут содержать вложенные подобъекты, всего поддержи-
вается пять уровней вложенности подобъектов (включая сам объ-
ект), однако в текущих версиях Windows используются только три
уровня:
• объект;
• набор свойств (property set) — подобъект первого уровня;
• свойство (property) — подобъект второго уровня;

Среди объектов выделяются контейнеры — объекты, содержа-
щие другие объекты. Объекты активного каталога образуют дре-
вовидную иерархическую структуру, подобную структуре файловой
системы, в роли каталогов выступают контейнеры, а в роли фай-
лов — объекты других типов.

Каждый объект активного каталога уникально идентифициру-
ется 128-битным числовым идентификатором GUID. Кроме того,
каждый объект имеет уникальное текстовое имя в специальном фор-
мате DN (distinguished name). DN однозначно идентифицирует объ-
ект, в активном каталоге не могут существовать два разных объекта,
имеющих общее DN. Для того чтобы обратиться к объекту, необя-
зательно знать его DN, поиск объекта может быть осуществлен по
части DN или по совокупности атрибутов объекта. DN имеет вид:

/атрибут=значение/атрибут=значение...
Некоторые клиентские программы используют альтернативную

запись DN:
атрибут=значение,атрибут=значение...
Начиная с Windows 2000, учетные записи пользователей и псев-

допользователей хранятся в активном каталоге. Имя пользователя
Windows может представляться в одном из следующих форматов:
• внутренний (DN) — /O=организация/D= DNS-домен/CN=

Users/CN=имя пользователя;
• основной — имя пользователя@DNS-домен;

Домены Windows 143

• совместимый с Windows NT — NetBIOS-домен\имя пользова-
теля;

• сокращенный — имя пользователя.
Последние два формата не обеспечивают однозначную иденти-

фикацию пользователя. При использовании этих форматов осущес-
твляется поиск в каталоге учетной записи пользователя, имеющего
заданное имя, причем результатом поиска всегда является первая
найденная запись (после нахождения первой записи поиск прекра-
щается).

Нетрудно видеть, что основной формат имени пользователя
Windows в точности совпадает с форматом, принятом в современных
системах электронной почты. Это не является случайным совпаде-
нием. Список пользователей Windows весьма тесно интегрирован
с электронной почтой и системами электронного документооборо-
та. Так, группы пользователей Windows могут использоваться как
списки рассылки Microsoft Exchange. Отдельные пользователи или
целые группы могут иметь атрибут «не использовать при управле-
нии доступом к объектам», такие пользователи и группы не могут
получать доступ к ресурсам сети иначе как через электронную почту
или автоматизированные системы электронного документооборота.

Помимо локальных групп пользователей, зарегистрированных
на отдельных компьютерах, и глобальных групп, зарегистрирован-
ных в отдельных доменах, в лесу доменов Windows могут сущес-
твовать так называемые вселенские∗ группы. Вселенские группы
определены в пределах всего леса, они могут использоваться при
настройке политики безопасности на любом компьютере леса. Так-
же вселенские группы могут выступать в роли глобальных списков
рассылки. Вселенские группы могут включать в себя пользовате-
лей, глобальные группы и другие вселенские группы. Включаться
вселенские группы могут только в другие вселенские группы.

Таким образом, система групп Windows (локальные, глобальн-
ые и вселенские группы) позволяет описывать любые иерархические
отношения между пользователями на любом из трех уровней: ком-
пьютера, домена и леса в целом.

Наиболее важные объекты активного каталога помещаются в
так называемый глобальный каталог (global catalog, GC), который
автоматически реплицируются на все контроллеры всех доверяемых

∗ В русскоязычной литературе чаще встречается термин универсаль-
ная группа, являющийся результатом некорректного перевода английс-
кого термина universal group.

144 Г л а в а 5

доменов. Данные, лежащие в глобальном каталоге, доступны из
любой точки любого доверяемого домена в любой момент времени
(естественно, исключая фатальные сбои в функционировании сети).

В сети Windows домены объединяются в единую структуру бо-
лее высокого уровня, называемую лесом. Логическая структура
леса представляет собой одно или несколько деревьев, узлами кото-
рого являются домены. Все домены, принадлежащие одному лесу,
связаны между собой двусторонними и транзитивными отношения-
ми доверия. В отличие от Windows NT, в доменах Windows 2000 и
более поздних версий нет необходимости устанавливать отношения
доверия вручную — при включении в лес нового домена автомати-
чески устанавливаются отношения доверия со всеми другими доме-
нами леса. Все деревья, составляющие лес, а также все их поддере-
вья являются организационными единицами. Это позволяет одной
операцией назначать одни и те же настройки политики безопасно-
сти многим компьютерам сети.

Одним из важнейших элементов активного каталога являет-
ся его схема, включающая в себя список поддерживаемых классов
(типов) объектов и список поддерживаемых атрибутов для каждого
класса. Все домены леса разделяют общую схему, вся информация о
схеме активного каталога полностью реплицируется на каждый кон-
троллер каждого домена. Контейнер, в котором хранится схема ле-
са, всегда имеет DN вида /CN=Schema/CN=Configuration/DC=имя
домена, где имя домена — имя любого домена данного леса.

Классы объектов активного каталога делятся на три категории:
• структурные (structural) — «нормальные» классы объектов, для

которых могут существовать объекты, к ним относящиеся;
• абстрактные (abstract) — шаблоны для порождения других

классов, например абстрактный класс Top используется как
шаблон для порождения всех других классов;

• дополнительные (auxiliary) — используются для добавления к
объектам других классов стандартных наборов атрибутов. На-
пример, структурный класс User (пользователь) использует на-
боры атрибутов, определяемые допольнительными классами
Mail-Recipient (получатель электронной почты) и Security-Prin-
cipal (субъект доступа).
Каждому типу объектов активного каталога соответствует ре-

гистрационная запись в схеме леса, содержащая следующие основ-
ные поля:

cn — основное имя (common name) данного класса. Именно этот
атрибут указывается в DN объектов, относящихся к данному классу;

Домены Windows 145

lDAPDisplayName — отображаемое имя данного класса, исполь-
зуется клиентскими программами для вывода результатов запросов
пользователя;

schemaIDGUID — GUID класса, 128-битный целочисленный
идентификатор, уникальный в пределах всего леса;

mustContain — список обязательных атрибутов объекта данного
класса;

mayContain — список необязательных атрибутов объекта дан-
ного класса;

possSuperiors — список классов контейнеров, в которых могут
лежать объекты данного класса;

objectClassCategory — категория данного класса: структурный,
абстрактный или дополнительный;

subClassOf — родительский класс, от которого порожден дан-
ный класс. Все атрибуты родительского класса наследуются дочер-
ним классом;

auxiliaryClass — список дополнительных классов, использован-
ных при регистрации данного класса;

defaultHidingValue — булевское значение, описывающее, долж-
ны ли объекты данного класса по умолчанию иметь атрибут «скры-
тый» (если TRUE, то должны). Скрытые объекты не отображаются
при просмотре активного каталога с помощью стандартной консоли
администрирования (MMC);

systemOnly — булевское значение, описывающее, может ли дан-
ный класс модифицироваться администраторами (если TRUE, то
не может);

defaultSecurityDescriptor — дескриптор защиты по умолчанию
для вновь создаваемых объектов данного класса;

isDefunct — булевское значение, описывающее, является ли дан-
ный класс отмененным. Для отмененных классов не могут создава-
ться новые объекты, однако уже существующие объекты автомати-
чески не удаляются;

description — текстовое описание класса.
Каждому атрибуту объекта также соответствует регистрацион-

ная запись в схеме леса, она содержит следующие основные поля:
cn, lDAPDisplayName, schemaIDGUID, systemOnly, isDefunct,

description — то же, что и для классов объектов;
attributeSyntax — тип атрибута. Поддерживаются один булев-

ский тип, семь целочисленных типов и восемнадцать строковых и
бинарных типов;

146 Г л а в а 5

rangeLower, rangeUpper — минимальное и максимальное допус-
тимые значения (для целочисленных атрибутов), минимальная и
максимальная допустимые длины в байтах (для строковых и би-
нарных атрибутов);

isSingleValued — булевское значение, описывающее, содержит ли
данный атрибут одно значение или список однотипных значений (ес-
ли TRUE, одно значение).

В качестве примера приведем небольшое подмножество стан-
дартных классов объектов в активном каталоге Windows 2003 с ука-
занием иерархии.

Top (абстрактный класс)
Domain (абстрактный класс)
Domain-DNS (с участием дополнительного класса Sam-Domain)
Group (с участием дополнительных классов Mail-Recipient и
Security-Principal)
Group-Policy-Container
Leaf (абстрактный класс)
Connection-Point (абстрактный класс)
Print-Queue
Service-Connection-Point
MS-SQL-SQLServer
MS-SQL-SQLDatabase
Volume
Domain-Policy
Secret
Organizational-Unit
Person (абстрактный класс)
Organizational-Person (абстрактный класс)
Contact (с участием дополнительного класса
Mail-Recipient)
User (с участием дополнительных классов
Mail-Recipient и Security-Principal)
Computer
inetOrgPerson
Security-Object (абстрактный класс)
Sam-Server
Вышеописанная архитектура активного каталога может показа-

ться чрезмерно сложной, но на самом деле наличие абстрактных и
дополнительных классов не усложняет, а упрощает создание новых
структурных классов.

Домены Windows 147

Например, абстрактный класс Connection-Point содержит в себе
все атрибуты, общие для всех объектов, к которым может подклю-
читься по сети удаленный пользователь. Производные от Connec-
tion-Point структурные классы Volume (логический диск), Print-
Queue (сетевой принтер) и Service-Connection-Point (сетевой сервис)
лишь детализируют свойства объекта класса Connection-Point. Так,
например, из 97 атрибутов объекта класса Volume лишь три атри-
бута (Content-Indexing-Allowed — должно ли осуществляться индек-
сирование диска, Last-Content-Indexed — время последнего индек-
сирования и UNC-Name — сетевое имя в формате UNC) вводятся
непосредственно в классе Volume. Еще три атрибута (Keywords —
ключевые слова для поиска, Managed-By — пользователь, отвеча-
ющий за обслуживание объекта и ms-DS-Settings — строка, описы-
вающая свойства объекта в произвольной форме) введены в классе
Connection-Point, а все остальные атрибуты унаследованы от корне-
вого класса Top.

Аналогично из 285 атрибутов класса Computer:
91 атрибут унаследован от абстрактного класса Top;
6 атрибутов унаследованы от абстрактного класса Person;
54 атрибута унаследованы от абстрактного класса Organizatio-

nal-Person;
14 атрибутов унаследованы от дополнительного класса Mail-

Recipient;
14 атрибутов унаследованы от дополнительного класса Security-

Principal;
84 атрибута унаследованы от класса User;

и только лишь 22 атрибута специфичны для класса Computer.
Следует отметить, что в некоторых случаях дизайнеры Micro-

soft излишне увлеклись наследованием атрибутов от родительских
классов. Например, каждый объект типа Computer имеет атрибуты
«фамилия», «домашний адрес» и «домашний телефон», что вызы-
вает недоумение. Впрочем, все эти атрибуты являются необязатель-
ными и вряд ли будут когда-либо применены к какому-то реальному
компьютеру.

Не следует думать, что огромное количество атрибутов, опре-
деленных для объектов различных классов, приводит к столь же
огромному расходу дисковой и оперативной памяти. Подавляющее
большинство атрибутов являются необязательными и отсутствуют
у подавляющего большинства объектов.

Для доступа к активному каталогу в Windows 2000 может ис-
пользоваться либо специально разработанный в Microsoft протокол

148 Г л а в а 5

ADSI, либо протокол LDAP (RFC 2251), использующийся для досту-
па к другим каталогам. Ряд функций активного каталога доступны
также по протоколам MAPI-RPC и X.500.

В большом лесу запросы пользователей далекого домена мо-
гут проходить долгий путь. Для оптимизации путей прохождения
запросов в лесах доменов Windows используется понятие сайт, или
узел (site). В каждый сайт входят компьютеры, соединенные между
собой высокоскоростными линиями связи. Компьютеры, входящие
в одну подсеть протокола IP, всегда входят в один сайт. Внутри од-
ного сайта репликация всегда осуществляется с использованием про-
токола RPC. Репликация между сайтами может происходить либо
по RPC, либо с использованием одного из MAPI-протоколов (SMTP,
X.400 и т. п.). Как правило, сайт объединяет все компьютеры одно-
го или нескольких доменов. Ситуаций, когда домен разбивается на
два или более сайтов, рекомендуется избегать, поскольку это замет-
но ухудшает репликацию внутри домена.

Для идентификации компьютеров в лесу используется протокол
DNS∗, гарантирующий уникальность имен компьютеров в отличие
от протокола NetBIOS, применявшегося для этой цели в Windows
NT. Например, DNS-именам server.filial.xxx.ru и server.filial.xxx.ua
соответствует общее NetBIOS-имя filial/server. Сервер DNS входит
в состав дистрибутива Windows Server, обычно сервер DNS устана-
виливается на всех контроллерах доменов.

Любой объект активного каталога может быть защищен деск-
риптором защиты, имеющим такой же формат, как и дескриптор
защиты локального объекта Windows.

Дескрипторы защиты объектов типа «организационная едини-
ца» позволяют делегировать пользователям полномочия на дос-
туп к тем или иным ресурсам леса. Например, для того, чтобы де-
легировать некоторому пользователю полномочия управлять спис-
ком пользователей некоторого домена, достаточно добавить в DACL
дескриптора защиты домена ACE, предоставляющий пользователю
требуемые права доступа.

Дескрипторы защиты объектов активного каталога наследуют-
ся по тем же правилам, что и дескрипторы защиты локальных объ-
ектов операционной системы. Для объектов активного каталога
поддерживается атрибут «автоматическое наследование», позволя-
ющий рекурсивно распространять делегирование полномочий поль-
зователей на домены низших уровней.

∗ Точнее, DDNS (RFC 2136).

Домены Windows 149

5.5. Групповая политика
Одним из важнейших новшеств в подсистеме защиты Windows

является групповая политика (group policy) — совокупность объ-
ектов активного каталога, описывающих те или иные аспекты кон-
фигурации операционной системы, а также индивидуальных настро-
ек отдельных пользователей и групп. Групповая политика включа-
ет в себя большинство элементов политики безопасности Windows,
в частности:
• распределение привилегий между пользователями;
• параметры подсистемы аутентификации, включая параметры

протокола Kerberos;
• политику аудита;
• параметры системных журналов, включая журнал аудита;
• параметры сервисов, включая режим запуска (автоматический/

ручной/запуск запрещен) и дескриптор защиты сервиса;
• список агентов восстановления EFS;
• шаблоны настроек отдельных прикладных и системных прог-

рамм (Internet Explorer, Task Scheduler, Windows Installer и т. п.).
В типичных конфигурациях Windows групповая политика со-

держит около 200-400 элементов, для удобства администрирования
они объединены в древовидную иерархическую структуру контей-
неров.

Каждый компьютер, работающий под управлением Windows,
имеет собственную групповую политику. Исключение составляют
контроллеры доменов, которые разделяют между собой общую груп-
повую политику, единую для всех контроллеров одного домена. Так-
же существует единая групповая политика для всего домена в целом.

В домене могут быть выделены особые группы пользователей и
компьютеров, называемые организационными единицами (organi-
zational units). Организационные единицы отличаются от обычных
групп тем, что им могут назначаться собственные групповые по-
литики. Это позволяет одномоментно назначать одинаковые нас-
тройки всем компьютерам, входящим в состав одной организаци-
онной единицы. Тем самым организационные единицы упрощают
администрирование большой сети. Организационные единицы мо-
гут включаться одна в другую, групповые политики вышележащих
организационных единиц наследуются нижележащими организаци-
онными единицами. Также групповые политики могут назначаться
сайтам.

Каждый элемент групповой политики может быть либо не оп-
ределен, либо иметь некоторое значение. Тип и диапазон возмож-

150 Г л а в а 5

ных значений различаются для разных элементов групповой по-
литики. Так, значение элемента Computer Configuration\Windows
Settings\Security Settings\Account Policies\Password Policy\Password
must meet complexity requirements может принимать значения «да»
или «нет», значением элемента Computer Configuration\Windows
Settings\Security Settings\Account Policies\Password Policy\Enforce
password history является целое число от 0 до 24, а значение элемента
Computer Configuration\Windows Settings\Scripts\Startup представ-
ляет список текстовых строк переменной длины.

Значение элемента групповой политики, определенное в некото-
рой организационной единице, автоматически наследуется всеми ни-
жележащими организационными единицами. Например, если адми-
нистратор домена присвоил элементу Computer Configuration\Win-
dows Settings\Security Settings\Local Policies\Audit Policy\Audit log-
on events групповой политики домена значение «Failure», неудачные
попытки входа пользователей в систему будут регистрироваться в
журнале аудита каждого компьютера домена.

Если значение элемента групповой политики, унаследованное
от групповой политики вышележащей организационной единицы,
вступает в противоречие с значением того же элемента, определен-
ного в нижележащей организационной единице, то конфликт разре-
шается по следующим правилам:
• если администраторы обеих организационных единиц не указа-

ли никаких особых правил разрешения данного конфликта, то
действует унаследованное значение;

• если администратор нижележащей организационной единицы
установил на данную групповую политику флаг «не наследо-
вать сверху», а администратор вышележащей организационной
единицы не установил порядок разрешения данного конфликта,
то действует значение, определенное администратором нижеле-
жащей организационной единицы;

• если администратор вышележащей организационной единицы
установил на данную групповую политику флаг «наследовать
вниз в любом случае», то унаследованное значение данного эле-
мента групповой политики действует в любом случае, незави-
симо от того, что определил в отношении данного элемента ад-
министратор нижележащей организационной единицы.
Групповая политика позволяет администраторам организаци-

онных единиц централизованно управлять политикой безопасности
большой сети. Если есть необходимость изменить некоторый аспект
политики безопасности всего дерева, администратору корня дерева

Домены Windows 151

достаточно всего лишь настроить соответствующим образом груп-
повой политики корня дерева и внесенные им изменения будут ав-
томатически реплицированы на все компьютеры дерева. При этом
администраторы нижележащих организационных единиц, несоглас-
ные с решением более высокого администратора, могут (если это яв-
но не запрещено администратором вышележащей организационной
единицы) отменить это решение в части, касающейся подведомст-
венных им организационных единиц леса.

Обычно администраторы организационных единиц высокого
уровня оставляют большинство полей групповой политики неза-
полненными. Это дает администраторам организационных единиц
низшего уровня свободу выбора в настройке политики безопасности
своих организационных единиц.

Элементы групповой политики сгруппированы в древовидную
иерархическую структуру, аналогичную структуре файловой сис-
темы или реестра. Групповая политика, назначенная компьютеру,
домену, организационной единице или сайту, включает в себя два
больших раздела:
• Computer Configuration (конфигурация компьютера) — содер-

жит политики, действующие на всю операционную систему в
целом;

• User Configuration (конфигурация пользователя) — содержит
политики, действующие на индивидуальные настройки пользо-
вателей, работающих с данным компьютером.
Пользователям и группам, не являющимся организационными

единицами, может назначаться «неполноценная» групповая поли-
тика, содержащая только раздел User Configuration. Эта групповая
политика считается более высокоприоритетной, чем групповая по-
литика компьютера.

Многие элементы групповых политик проецируются в реестр
Windows, т. е. при изменении значения элемента групповой полити-
ки автоматически меняется соответствующее значение реестра Win-
dows. При этом политики из раздела Computer Configuration прое-
цируются в ключ реестра HKEY LOCAL MACHINE, а политики из
раздела User Configuration — в HKEY CURRENT USER. Например,
элемент групповой политики User Configuration\Windows Settings\
Internet Explorer Maintenance\Browser User Interface\Browser Title
проецируется в значение Window Title ключа реестра HKEY CUR-
RENT USER\Software\Microsoft\ Internet Explorer\Main. При каж-
дом обновлении элемента групповой политики автоматически об-
новляется соответствующее значение реестра, это называется при-

152 Г л а в а 5

менением групповой политики. Применение групповой политики
происходит не только при внесении в нее изменений, но и автомати-
чески, по умолчанию задан полуторачасовой интервал между обнов-
лениями. Кроме того, политики из раздела Computer Configuration
применяются при кажом старте операционной системы, а полити-
ки из раздела User Configuration — при каждом входе пользовате-
ля в систему. Впрочем, эксперименты показывают, что применение
групповой политики часто происходит реже, чем заявлено в доку-
ментации Microsoft.

В Windows 2000 применение групповых политик происходило
в синхронном режиме — на компьютерах, входящих в состав до-
мена, загрузка операционной системы не завершалась до примене-
ния всех политик из разделов Computer Configuration, вход поль-
зователя в систему не завершался до применения всех политик из
разделов User Configuration. Это приводило к неприятным задер-
жкам, и, начиная с Windows XP, на рабочих станциях применение
групповых политик проходит асинхронно. В результате в течение
первых минут после авторизации пользователя конфигурация опе-
рационной системы может регулироваться устаревшими групповы-
ми политиками. На серверах, начиная с Windows 2003, политики
Computer Configuration применяются синхронно, а политики User
Configuration — асинхронно.

Если прикладная или системная программа считывает свои
конфигурационные данные точно в тот момент, когда происходит
применение групповой политики, возможна ситуация, когда некото-
рые данные, считанные программой, относятся к обновленной груп-
повой политике, а некоторые другие данные — к старой, необнов-
ленной политике. Для предотвращения таких ситуаций предназна-
чены специальные системные функции EnterCriticalPolicySection и
LeaveCriticalPolicySection, расположенные в библиотеке userenv.dll.
Перед считыванием своей конфигурации из реестра программа дол-
жна вызвать функцию EnterCriticalPolicySection, а по завершении
считывания — функцию LeaveCriticalPolicySection. Между этими
двумя вызовами гарантируется, что групповая политика в это время
применяться не будет. Интервал времени между этими вызовами не
должен превосходить десяти минут, в противном случае операцион-
ная система ведет себя так, будто программа вызвала LeaveCritical-
PolicySection.

Если пользователь, обладающий соответствующими полномо-
чиями, вручную модифицирует значение реестра, на которое прое-
цируется элемент групповой политики, это изменение будет действо-

Домены Windows 153

вать только до следующего применения групповой политики, затем
оно будет отменено.

Каждый из двух разделов групповой политики распадается на
три подраздела:
• Software Settings — содержит политики, используемые сторон-

ним программным обеспечением, не входящим в состав дистри-
бутива Windows. Чаще всего этот подраздел пуст;

• Windows Settings — содержит политики, описывающие настрой-
ки различных компонент Windows. Большинство политик, со-
держащихся в данном подразделе, связаны с безопасностью опе-
рационной системы;

• Administrative Templates — содержит политики, позволяющие
автоматизировать управление большой сетью, применяя одни
и те же настройки к разным компьютерам сети. В отличие
от подраздела Windows Settings, в подразделе Administrative
Templates по умолчанию все политики не определены. Адми-
нистратор может определять эти политики либо вручную, с по-
мощью консоли администрирования Windows (MMC), либо с
использованием заранее подготовленных файлов администра-
тивных шаблонов (ADM-файлов).
В качестве примера перечислим политики подраздела Administ-

rative Templates, которые могут быть применены к подсистеме
печати Windows (Computer Configuration/Administrative Templates/
Printers):
• допустима ли печать документов веб-сервером по запросам

пользователей Internet (не поддерживается начиная с Windows
2003);

• должны ли новые принтеры автоматически публиковаться в ак-
тивном каталоге (не поддерживается начиная с Windows Vista,
в более ранних версиях по умолчанию — да);

• какую веб-ссылку должен выводить Проводник Windows вместо
заданной по умолчанию ссылки «Получение справки о выводе
на печать», указывающей на сайт Microsoft;

• какое максимальное количество принтеров каких типов должен
отображать Проводник Windows на странице сканирования се-
ти, если установлена связь с контроллером домена (поддержи-
вается начиная с Windows Vista). По умолчанию заданы следу-
ющие значения: 20 принтеров активного каталога, 10 принтеров
Bluetooth, TCP/IP-принтеры и веб-принтеры не отображать;

• какое максимальное количество принтеров каких типов дол-
жен отображать Проводник Windows на странице сканирова-

154 Г л а в а 5

ния сети, если не удается установить связь с контроллером до-
мена (поддерживается начиная с Windows Vista). По умолча-
нию заданы следующие значения: 50 TCP/IP-принтеров, 50 веб-
принтеров, 10 принтеров Bluetooth;

• следует ли формировать задание на печать на стороне клиента
(по умолчанию) или на стороне сервера (поддерживается начи-
ная с Windows Vista);

• следует ли показывать недоступные принтеры в списке принте-
ров активного каталога (по умолчанию — нет);

• разрешено ли использование на данном компьютере драйверов
принтера, работающих в режиме ядра (т. е. именно драйверов, а
не библиотек). По умолчанию в Windows XP и ранее драйверы
принтера, работающие в режиме ядра, разрешены, в Windows
2003 — запрещены, а начиная с Windows Vista такие драйверы
запрещены в любом случае, независимо от состояния данного
элемента групповой политики;

• какое место размещения сетевых принтеров считать ближай-
шим (по умолчанию определяется автоматически на основе IP-
адреса компьютера);

• следует ли учитывать атрибут «размещение» объекта «прин-
тер» при поиске сетевых принтеров (по умолчанию — нет);

• следует ли включать сетевые принтеры в карту сетевого окру-
жения, поддерживаемую сервисом Computer Browser (по умол-
чанию — тогда и только тогда, когда отсутствует связь с кон-
троллером домена);

• в каких случаях следует удалять из активного каталога недос-
тупные принтеры: никогда (по умолчанию), когда принтер не-
доступен, но доступен сервер печати, к которому этот принтер
должен быть подключен, либо всегда;

• как часто следует проверять доступность сетевых принтеров (по
умолчанию — каждые восемь часов);

• какой относительный приоритет должен присваиваться пото-
ку сервера активного каталога, отслеживающему недоступные
принтеры (по умолчанию — обычный относительный приори-
тет, THREAD PRIORITY NORMAL);

• сколько раз принтер должен не ответить на запрос, чтобы быть
признанным недоступным (по умолчанию — три раза);

• регистрировать ли в журнале результаты проверки доступности
сетевых принтеров (поддерживается начиная с Windows XP, по
умолчанию — нет);

Домены Windows 155

• можно ли публиковать информацию о сетевых принтерах в ак-
тивном каталоге (по умолчанию — да);

• может ли сервер печати обслуживать удаленных клиентов (под-
держивается начиная с Windows 2003, по умолчанию — да, если
к компьютеру подключен хотя бы один сетевой принтер);

• как часто сервер печати должен проверять доступность сетевых
принтеров, подключенных к данному компьютеру (по умолча-
нию — только один раз, при старте сервера печати).
Физически групповые политики хранятся в контейнере /CN=

Policies/CN=System/DC=имя домена активном каталога. Каждо-
му объекту групповой политики соответствует объект класса group-
PolicyContainer, имя (CN) которого представляет собой текстовое
представление GUID данной групповой политики (этот GUID отли-
чается от атрибута objectGUID объекта групповой политики). Груп-
повая политика может содержать ссылки на ассоциированные с нею
файлы (например, на скрипт, который должен автоматически вы-
полняться перед завершением работы операционной системы), путь
к месту хранения этих файлов хранится в атрибуте gPCFileSysPath
объекта групповой политики. По умолчанию эти файлы хранят-
ся на контроллере домена в директории sysvol\имя домена\Policies\
{GUID групповой политики}. Внутри каждого контейнера группо-
вой политики располагаются подконтейнеры с именами (CN) Machi-
ne и User, в них хранятся, соответственно, разделы Computer Confi-
guration и User Configuration данной групповой политики.

Вопросы для самопроверки
1. Какую основную задачу помогает решать доменная архитектура корпо-

ративных сетей?
2. Что такое контроллер домена?
3. Что такое сквозная аутентификация в доменах Windows?
4. Как обеспечивается в Windows защита протокола сквозной аутентифи-

кации от навязывания нарушителем ложного сервера?
5. Для чего предназначено кэширование аутентификационной информации

пользователей доменов Windows?
6. Какие субъекты доступа могут входить в глобальные группы доменов

Windows?
7. Каким субъектам доступа могут назначаться права и привилегии на ком-

пьютерах, входящих в состав доменов Windows?
8. Как строятся отношения доверия между доменами Windows, входящими

в один и тот же лес?
9. Какие особенности имеет сквозная аутентификация в ситуации, когда

пользователь, зарегистрированный в одном домене леса, обращается к серверу,
входящему в состав другого домена того же леса?

10. Что такое активный каталог?

156 Г л а в а 5

11. Какова внутренняя структура объектов активного каталога?
12. В каких форматах может быть представлено в активном каталоге имя

пользователя?
13. Что такое глобальный каталог?
14. Какие категории классов объектов активного каталога вы знаете?
15. Как описываются наборы обязательных и необязательных атрибутов

объектов того или иного класса?
16. Как в активном каталоге описываются списки, составленные из одно-

типных значений?
17. Для решения каких задач в системе классов активного каталога при-

меняются абстрактные и дополнительные классы?
18. Что в лесу доменов Windows называется сайтом?
19. Как реализуется делегирование полномочий пользователей в лесу до-

менов Windows?
20. Что называется групповой политикой в доменах Windows?
21. По каким правилам разрешаются конфликты, которые могут возникать

при наследовании групповой политики?
22. Каково основное предназначение групповой политики?
23. В какие два основных раздела группируются значения групповой по-

литики, входящие в состав одного объекта групповой политики?
24. На какие три подраздела распадается каждый из этих основных раз-

делов?
25. Что такое применение групповой политики?
26. Где физически хранятся групповые политики?

6 Безопасность операционных систем
мобильных устройств

Одной из наиболее заметных тенденций развития компьютер-
ной техники в последние годы является неуклонный рост вычисли-
тельной мощности мобильных электронных устройств: мобильных
телефонов, планшетных компьютеров, электронных книг и т. п. На-
чиная примерно с 2007 года, граница между персональными ком-
пьютерами и мобильными электронными гаджетами стала заметно
стираться. Сегодня почти не вызывает удивления ситуация, когда
мобильный телефон превосходит некоторые персональные компью-
теры по вычислительной мощности процессора, объему оперативной
и долговременной памяти. Современные мобильные устройства ос-
нащаются полноценными операционными системами, близкими по
своим возможностям к универсальным операционным системам пер-
сональных компьютеров. Неудивительно, что мобильные операци-
онные системы заимствуют от универсальным операционных систем
не только отдельные алгоритмические решения, но и целые прог-
раммные компоненты. Так, самая распространенная на сегодняш-
ний день мобильная операционная система Google Android исполь-
зует то же ядро, что и универсальная операционная система Linux,
а вторая по популярности мобильная операционная система Apple
iOS построена на основе прикладных интерфейсов универсальных
операционных систем семейства BSD UNIX.

Типичные угрозы безопасности операционной системы моби-
льного устройства существенно отличаются от аналогичных угроз
для операционной системы персонального компьютера или сетевого
сервера. Некоторые угрозы, малозначительные для обычных ком-
пьютеров, становятся очень опасными для мобильных устройств, и
наоборот. Например, кража мобильного телефона карманным во-
ром является намного более серьезной угрозой, чем кража сервера
вором-домушником. Программная закладка, внедренная в операци-
онную систему персонального компьютера и получившая доступ к
электронным банковским счетам пользователя, обычно имеет весь-
ма ограниченные возможности по несанкционированному переводу
денежных средств с этих счетов. Но программная закладка, внед-
ренная в операционную систему мобильного устройства, элементар-
но решает данную задачу путем несанкционированного заказа доро-
гостоящих SMS-услуг с телефонного номера, контролируемого нару-

158 Г л а в а 6

шителем, либо (реже) путем имитации голосового звонка на плат-
ный номер. С другой стороны, угрозы, связанные с одновременным
доступом нескольких пользователей к одному экземпляру операци-
онной системы, для мобильных операционных систем, как правило,
неактуальны.

К наиболее актуальным угрозам безопасности мобильных опе-
рационных систем обычно относят следующие:
• раскрытие конфиденциальной информации в результате утери

или кражи мобильного устройства;
• несанкционированный заказ дорогостоящих услуг программной

закладкой, внедренной в операционную систему мобильного ус-
тройства;

• раскрытие конфиденциальной информации в результате перех-
вата беспроводного сетевого трафика, генерируемого мобильн-
ым устройством;

• несанкционированный сбор программной закладкой персональ-
ных данных пользователя мобильного устройства;

• потеря данных, хранящихся на мобильном устройстве.
В настоящее время для мобильных операционных систем разра-

батывается огромное количество вредоносного программного обес-
печения. По данным [24], около четверти всех приложений, напи-
санных для операционной системы Android, являются вредоносны-
ми. Количество вредоносных программ для Android растет экспо-
ненциально, каждый год оно увеличивается в 2–16 раз. Такое бо-
льшое различие в цифрах, даваемых разными источниками, объяс-
няется тем, что граница между множествами вредоносных и невре-
доносных мобильных приложений весьма условна. Хорошим при-
мером «пограничных» приложений являются программы, позволя-
ющие легальному владельцу телефона обнаружить украденный у
него телефон путем незаметного перехвата и доставки на заданный
адрес электронной почты информации о сделанных звонках, отп-
равленных и полученных SMS, географическом местоположении и
т. п. Если такое приложение скрытно установлено на мобильное уст-
ройство, принадлежащее чужому человеку, оно, очевидно, является
вредоносным. Но если оно скрытно установлено на телефон, по-
даренный жене или ребенку, вопрос о вредоносности приложения
неочевиден. Другой пример «пограничных» приложений — навяз-
чивые баннерные сети.

Одно из наиболее типичных вредоносных действий вредонос-
ного мобильного приложения — отправка дорогостоящих SMS на

Безопасность операционных систем мобильных устройств 159

номер, контролируемый создателем приложения или его сообщни-
ками. Реже встречаются автоматизированный сбор персональных
данных, перехват и подмена сетевого и SMS-трафика при доступе
клиента к банковских системам, подмена рекламных баннеров в веб-
браузере на баннеры, предоставляемые сообщниками разработчика
приложения. В конце 2011 года появилось несколько вредоносных
программ, несанкционированно записывающих телефонные разго-
воры пользователя и отправляющих полученные звуковые файлы
на заданный сервер Internet. Теоретически возможно распознава-
ние вредоносным приложением перехваченной речевой информации
и последующая передача на заданный адрес только тех фрагментов
телефонных разговоров, которые содержат заранее заданные клю-
чевые слова. Впрочем, пока такая функциональность реализовыва-
лась только в опытно-демонстрационных приложениях [22], но не в
«боевых» программных закладках.

Начиная с марта 2011 года, отмечаются единичные случаи появ-
ления вредоносных приложений на сайте Android Market. В середи-
не июня 2011 года появилась модификация знаменитого бота Zeus,
предназначенная для работы под управлением операционой системы
Android. Кроме того, существуют версии этого бота под мобильные
операционные системы Symbian, Windows Mobile и BlackBerry.

По данным «Лаборатории Касперского», по состоянию на август
2012 года вредоносное программное обеспечение, предназначенное
для операционной системы Android, классифицируется следующим
образом:

49 % — программные закладки, собирающие персональные дан-
ные пользователей для последующей рассылки спама;

25 % — программные закладки, несанкционированно заказыва-
ющие услуги путем отправки SMS;

18 % — многофункциональные боты, входящие в состав бот-
нетов;

2 % — программные закладки, специализирующиеся на сборе
информации о банковских счетах;

6 % — другие вредоносные приложения.
Типичными симптомами заражения мобильного устройства

вредоносными программами являются:
• необъяснимо быстрое уменьшение денежных средств на счету;
• появление новых ярлыков в списке установленных приложений;
• появление непонятных записей в папках полученных и отправ-

ленных SMS-сообщений или в списках входящих и исходящих
голосовых вызовов;

160 Г л а в а 6

• скачкообразное увеличение расхода электроэнергии без види-
мых причин.
Не менее серьезной проблемой, чем заведомо вредоносное прог-

раммное обеспечение, являются некорректно работающие мобиль-
ные приложения, причиняющие ущерб пользователю непреднаме-
ренно в результате допущенных разработчиками программных оши-
бок. Пользователи часто не понимают, что причина некорректной
работы мобильного устройства кроется не в устройстве как таковом,
а в недостаточно отлаженном приложении. В результате недорабо-
танные приложения могут оказывать заметное негативное влияние
на репутацию разработчиков операционной системы мобильного ус-
тройства и самого мобильного устройства как такового.

Компания Apple решает эту проблему путем тщательного тес-
тирования всех мобильных приложений сторонних производителей,
разработанных для iPhone и iPad. Такое тестирование может за-
нимать несколько недель, более половины приложений в итоге по-
лучают отказ в размещении в официальном онлайн-магазине Apple
App Store. По некоторым сведениям [18], причиной отказа часто
является не недостаточно высокое качество приложения, а то, что
данное приложение может составить конкуренцию собственным раз-
работкам Apple. Кроме того, каждый производитель программного
обеспечения для iOS должен быть предварительно зарегистрирован
в Apple App Store, что стоит от 100 долларов США в год. Хотя эта
сумма и является чисто символической, для многих вирусописате-
лей даже такая сумма неприемлема.

В целом данная стратегия позволяет радикально сократить ко-
личество и разнообразие вредоносного программного обеспечения,
разрабатываемого для операционной системы iOS. Пока известно то-
лько одно вредоносное приложение, сумевшее проникнуть на Apple
App Store и получить заметное распространение — спам-бот Find
and Call. Несколько других вредоносных приложений (в том числе
и знаменитый вирус Ike) опасны только для тех мобильных уст-
ройств, на которых взломана программная блокировка, запрещаю-
щая установку приложений из источников, отличных от App Store
(т. е. выполнен jailbreak).

С другой стороны, ограничение доступа сторонних фирм на ры-
нок приложений для iOS заметно снижает популярность этой опе-
рационной системы среди конечных пользователей. Так, по данным
[23], по состоянию на май 2012 года, в США под управлением iOS
работало 29 % мобильных устройств, в то время как доля устройств,
работающих под управлением Android, составляла 61 %.

Безопасность операционных систем мобильных устройств 161

Перечислим некоторые правила, которым должно удовлетво-
рять каждое приложение, доступное через Apple App Store:
• приложение не должно содержать недокументированных фун-

кций, как и использовать недокументированные функции опе-
рационной системы;

• приложение не должно выполнять загрузку больших файлов из
мобильной сети без уведомления пользователя;

• приложение не должно устанавливать или запускать другие
приложения;

• приложение не должно обращаться к данным других приложе-
ний;

• приложение не должно собирать персональные данные поль-
зователя (включая географическое местоположение) без явно
выраженного согласия пользователя.
Компания Google, в отличие от Apple, декларирует максима-

льную открытость своей операционной системы Android. Каждое
приложение для Android должно быть подписано разработчиком, но
заверение этой подписи каким бы то ни было удостоверяющим цент-
ром не требуется. В каталог Google Play и интернет-магазин Android
Market допускаются все приложения, кроме заведомо вредоносных
и заведомо неработоспособных. Время от времени это приводит к
скандальным ситуациям, негативно сказывающихся на репутации
торговой марки Android. Например, Android-версия приложения
eMobiStudio MemoryUp, хорошо зарекомендовавшего себя на плат-
формах Symbian, BlackBerry и Windows Mobile, несанкционированно
удалила из-за программной ошибки данные адресных книг несколь-
ких тысяч пользователей, установивших эту программу.

Открытость операционной системы Android не следует преуве-
личивать. В отличие от большинства разработчиков универсальных
операционных систем, компания Google сохраняет за собой контроль
над всеми приложениями, работающими на всех экземплярах опе-
рационной системы Android. При необходимости компания Google,
так же, как и Apple, может одновременно удалить все экземпляры
любого заданного приложения, установленного на всех мобильных
устройствах со своей операционной системой.

Долгое время обеспечение безопасности мобильных операцион-
ных систем рассматривалось их разработчиками как второстепен-
ная, низкоприоритетная задача. Но ситуация постепенно меняется
к лучшему, с каждой следующей версией мобильные операционные
системы становятся все более защищенными. При этом разработчи-
ки мобильных операционных систем широко используют решения,

162 Г л а в а 6

апробированные на универсальных операционных системах. Так, в
версии 4.2 операционной системы Android начала поддерживаться
функция доверенного подтверждения пользователем потенциально
опасного действия, очень похожая на UAC в Windows. Эта фун-
кция используется по умолчанию при отправке SMS-сообщений —
до тех пор, пока пользователь не подтвердит отправку сообщения,
оно не будет отправлено, при этом прикладные программы не име-
ют технической возможности имитировать данное подтверждение.
Для более ранних версий Android существуют приложения третьих
фирм (например, LBE Security Master, LBE Privacy Guard), реали-
зующие аналогичную функциональность.

В мобильных операционных системах широко применяется дав-
но используемая в универсальных операционных системах иденти-
фикация программных файлов по цифровым подписям. Подобно
тому, как пользователь Windows может запретить установку на свой
компьютер драйверов, не имеющих цифровой подписи Microsoft,
пользователь Android может запретить установку на свое устрой-
ство программных файлов, безопасность которых не подтверждена
компанией Google.

Управление доступом в Android почти не использует унасле-
дованный от Linux дискреционный механизм, основанный на су-
бъектах, объектах, методах и правах доступа. Единственным ин-
струментом управления доступом в Android являются привилегии
(permissions∗), которые назначаются, в отличие от универсальных
операционных систем, не пользователям, а приложениям. Факти-
чески, в операционной системе Android приложения рассматрива-
ются в качестве пользователей. При установке приложения ему
назначаются собственные UID и GID, добавляются все необходим-
ые записи в системные файлы Linux, содержащие сведения о заре-
гистрированных пользователях. Исключением является ситуация,
когда несколько приложений, изготовленных одним и тем же раз-
работчиком, явно указывают операционной системе, что их следует
выполнять от имени одной и той же учетной записи пользовате-
ля. Это может быть сделано посредством атрибута sharedUserId ма-
нифеста AndroidManifest.xml, включаемого в дистрибутив Android-
приложения.

Поскольку каждое приложение Android в обязательном поряд-
ке снабжается цифровой подписью разработчика, теоретически воз-

∗ Заметим, что в Windows термин permission используется для обоз-
начения не привилегий, а прав доступа, это создает терминологическую
путаницу.

Безопасность операционных систем мобильных устройств 163

можно управление доступом приложений на основе информации об
их разработчиках, например, разделение приложений на более дове-
ренные и менее доверенные. Но на практике эта возможность пока
не используется.

Перечислим некоторые привилегии Android, часто запрашива-
емые приложениями:
• ACCESS COARSE LOCATION — позволяет приложению полу-

чать доступ к информации о местоположении мобильного уст-
ройства, предоставляемой сетями GSM и WiFi;

• ACCESS FINE LOCATION — позволяет приложению получать
доступ к информации о местоположении мобильного устройст-
ва, предоставляемой модулем GPS;

• ACCESS NETWORK STATE — позволяет приложению получа-
ть информацию о GSM-сети, к которой подключено устройство;

• ACCESS WIFI STATE — позволяет приложению получать ин-
формацию о WiFi-сети, к которой подключено устройство;

• CALL PHONE — разрешает приложению инициировать голо-
совые звонки, за исключением звонков на номера экстренной
помощи;

• CAMERA — разрешает приложению доступ к фото/видеока-
мере;

• INTERNET — разрешает приложению доступ к Internet;
• RECEIVE SMS — разрешает приложению обрабатывать входя-

щие SMS-сообщения;
• RECORD AUDIO — разрешает приложению доступ к микрофо-

ну;
• WAKE LOCK — разрешает приложению предотвращать пере-

ход устройства в режим сна;
• WRITE EXTERNAL STORAGE — разрешает приложению за-

писывать данные на карту внешней памяти устройства.
Операционная система Android не поддерживает динамическое

включение и выключение привилегий. Все привилегии, требуемые
приложением, предоставляются ему сразу при инсталляции и затем
автоматически включаются при каждом запуске. Перечень требуе-
мых приложению привилегий включается в манифест приложения
(файл AndroidManifest.xml) в виде списка записей следующего вида:

<uses-permission android:name="android.permission.RECEIVE SMS"/>

Если в ходе выполнения той или иной операции обнаруживает-
ся, что привилегия, необходимая для завершения данной операции,
не предоставлена приложению, в приложении возникает исключите-
льная ситуация SecurityException. В некоторых случаях (например,

164 Г л а в а 6

при использовании метода sendBroadcast) приложение не получает
никакой информации о причине сбоя или даже вообще не получает
информации о случившемся сбое.

Почти все случаи отказа в доступе из-за отсутствия необходи-
мых привилегий регистрируются в системном журнале. Кроме то-
го, операционная система может выдавать пользователю интерак-
тивные сообщения об ошибках, связанных с попытками нарушения
действующей политики безопасности теми или иными приложени-
ями.

Помимо привилегий, стандартных для всех приложений And-
roid, каждое конкретное приложение (или группа приложений, из-
готовленных одним и тем же разработчиком) может определять
в AndroidManifest.xml свои собственные нестандартные привилегии
примерно следующим образом:

<permission android:name="com.me.app.myapp.permission.DEADLY

ACTIVITY"

android:label="@string/permlab deadlyActivity"

android:description="@string/permdesc deadlyActivity"

android:permissionGroup="android.permission-group.COST MONEY"

android:protectionLevel="dangerous"/>

Атрибут protectionLevel является обязательным, он использу-
ется операционной системой при выборе способа реакции на иск-
лючительную ситуацию, связанную с определяемой привилегией.
Атрибут permissionGroup является необязательным, единственное
его назначение — выбор сообщения, разъясняющего пользователю
смысл случившегося сбоя. Как правило, приложения используют
одно из стандартных сообщений операционной системы, это упро-
щает локализацию таких сбоев. Атрибуты label и description яв-
ляются обязательными, они содержат, соответственно, идентифика-
торы краткого и полного текстового описания данной привилегии.
Идентификаторы этих описаний описываются примерно следующим
образом:

<string name="permlab callPhone"> directly call phone

numbers</string>

<string name="permdesc callPhone"> Allows the application

to call phone numbers without your intervention. Malicious

applications may cause unexpected calls on your phone bill.

Note that this does not allow the application to call

emergency numbers.</string>

Пользователь может просматривать список привилегий, под-
держиваемых в текущей конфигурации операционной системы, с

Безопасность операционных систем мобильных устройств 165

помощью главного меню пользовательского интерфейса (пункт Set-
tings/Application) или в командной строке командой adb shell pm
list permissions.

Временные данные приложений, записываемые во внутреннюю
память устройства, хранятся внутри домашних директорий соответ-
ствующих пользователей Linux. Поскольку в Linux пользователи по
умолчанию не имеют доступа к содержимому домашних директо-
рий друг друга, данные (в том числе и cookie посещенных интернет-
сайтов) одного приложения Android обычно недоступны другим при-
ложениям. Исключением является ситуация, когда приложение яв-
но предоставляет доступ другим приложениям к своим данным.

В iOS система управления доступом в целом похожа на анало-
гичную систему Android, но устроена намного проще и примитивнее.
Привилегий поддерживается всего пять:
• обращаться к входящей электронной почте;
• обращаться к входящим SMS;
• отсылать SMS;
• иницировать телефонные звонки;
• обращаться к подсистеме GPS.

Перед тем, как воспользоваться любой из трех последних при-
вилегий, приложение iOS должно получить явно выраженное сог-
ласие пользователя на выполнение соответствующего действия.

Как правило, на устройствах, работающих под управлением
iOS, выполняются только доверенные приложения, тщательно про-
веренные и одобренные специалистами Apple. Поэтому к подсис-
теме управления доступом iOS не предъявляется высоких требова-
ний. Таким образом, несмотря на свою крайнюю примитивность,
подсистема управления доступом iOS представляется вполне удов-
летворительной.

Принцип минимизации полномочий соблюдается в базовых кон-
фигурациях как Android, так и iOS (впрочем, в последнем случае
не вполне ясно, можно ли корректно говорить о принципе миними-
зации полномочий для такой примитивной системы разграничения
доступа) — ни одно приложение не имеет технической возможнос-
ти получить полномочия суперпользователя root. Однако многие
пользователи Android и некоторые пользователи iOS отключают эту
защиту. В результате приложения, в том числе и вредоносные, полу-
чают больше функциональных возможностей, в число которых вхо-
дят возможности реализовывать стелс-технологии и активно проти-
водействовать средствам администрирования и антивирусному прог-
раммному обеспечению. Всякое приложение, выполняющееся на

166 Г л а в а 6

«рутованном» телефоне с полномочиями суперпользователя, име-
ет ничем не ограниченный доступ ко всем объектам операционной
системы телефона. Когда недостаточно отлаженный или заведомо
вредоносный программный код получает такой доступ, последствия
могут стать фатальными как для самой операционной системы, так
и для хранимых и обрабатываемых в ней пользовательских данных.

Операционная система iOS хранит все данные в пользовательс-
кой части внешней памяти в зашифрованном виде. Наиболее конфи-
денциальные данные подвергаются дополнительному шифрованию.
Используемые при этом ключи не предоставляются пользователем,
а хранятся во внутренней памяти устройства, т. е. защита факти-
чески реализуется только от нарушителя, пытающегося прочитать
внешнюю память данного устройства, используя другое устройст-
во. В операционной системе Android, в отличие от iOS, шифрование
данных практически не применяется, хотя и поддерживается.

Практически все производители антивирусного программного
обеспечения уже разработали версии своих программ для операци-
онной системы Android. По архитектуре и функциональности мо-
бильные антивирусные комплексы не имеют принципиальных отли-
чий от антивирусных комплексов, предназначенных для применения
на персональных компьютерах или серверах. Многие эксперты от-
мечают, что эффективность мобильных антивирусных комплексов
существенно уступает эффективности тех же антивирусных комп-
лексов для универсальных операционных систем. Так, по данным
исследования, проведенного в марте 2012 года компанией AV-Test
[19], две трети мобильных антивирусных комплексов практически
бесполезны. Впрочем, для мобильных антивирусов Касперского и
F-Secure данное исследование не выявило существенных слабостей
реализуемой защиты.

Начиная с версии Android 4.2, поддерживается режим, когда
каждое приложение, независимо от источника, из которого оно ус-
тановлено, должно автоматически проверяться облачным антиви-
русным сканером Google.

Антивирусные приложения для мобильных операционных сис-
тем часто дополняются так называемой «противоугонной» функ-
циональностью, позволяющей легальному пользователю устройст-
ва найти свое устройство по сигналам GPS, удаленно заставить уст-
ройство издать громкий звуковой сигнал, привлекающий внимание
окружающих к вору, удаленно уничтожить персональные данные,
хранящиеся на устройстве и т. п. Эффективность такой защиты ос-
тавляет желать лучшего. После выключения и полной перепрошив-

Безопасность операционных систем мобильных устройств 167

ки украденного устройства весь противоугонный функционал отк-
лючается. Кроме того, даже исправно работающая противоугонная
программа не всегда позволяет вернуть украденное устройство. Так,
некто Mystyes пишет в комментариях к [25]: «У меня украли айфон.
Телефонная книжка злоумышленника через айклауд синхронизиро-
валась с новым айфоном, но наша милиция найти его не может».

Некоторые мобильные антивирусы (например, Avast) включают
в себя дополнительную функциональность, позволяющую пользова-
телю осуществлять фильтрацию входящих и исходящих голосовых
звонков и SMS-сообщений, вводить белые и черные списки телефон-
ных номеров.

Как и у любых других операционных систем, программное обес-
печение мобильных операционных систем может иметь уязвимости,
позволяющие вредоносным приложениям несанкционированно по-
вышать свои полномочия. Так, вредоносные приложения Dream-
Exploid, Wukong и Gongfu эксплуатировали уязвимости старых вер-
сий операционной системы Android, чтобы несанкционированно по-
лучать полномочия суперпользователя root и устанавливать полный
контроль над зараженной системой.

Интересно отметить, что программный код приложений iOS вы-
полняется непосредственно на процессоре мобильного устройства, в
то время как программный код каждого приложения Android рабо-
тает в виртуальной Java-машине. Как и следовало ожидать из со-
ображений здравого смысла, это различие не оказывает заметного
влияния на сравнительную безопасность этих двух операционных
систем.

Вопросы для самопроверки
1. Каковы наиболее актуальные угрозы безопасности мобильных операци-

онных систем?
2. Какова доля вредоносного программного обеспечения среди всего прог-

раммного обеспечения, разрабатываемого для операционной системы Android?
3. Какие вредоносные действия наиболее характерны для вредоносных мо-

бильных приложений?
4. Каковы типичные симптомы заражения мобильного устройства вредо-

носной программой?
5. Какими мерами компания Apple пытается затруднять распространение

вредоносного программного обеспечения на мобильных устройствах, произве-
денных этой компанией?

6. Чем отличается подход компании Google к взаимодействию с независим-
ыми разработчиками приложений для операционной системы Android от анало-
гичного подхода компании Apple к взаимодействию с независимыми разработ-
чиками приложений iOS?

168 Г л а в а 6

7. Как в мобильных операционных системах используются цифровые под-
писи программных файлов?

8. Какие привилегии приложений поддерживаются в операционной системе
Android?

9. Поддерживается ли в операционной системе Android динамическое вклю-
чение и выключение привилегий?

10. Как разработчик приложения для операционной системы Android мо-
жет определять нестандартные привилегии для использования своим прило-
жением?

11. Какие привилегии приложений поддерживаются в операционной сис-
теме iOS?

12. Как в современных мобильных операционных системах реализуется
принцип минимизации полномочий пользователей?

13. Какие особенности имеют мобильные антивирусные комплексы по срав-
нению с аналогичным программным обеспечением, разрабатываемым для пер-
сональных компьютеров и сетевых серверов?

7 Виртуализация операционных систем

Виртуализация операционных систем в последние годы стала
одним из магистральных направлений развития информационных
технологий. По данным [21], в 2011 году 39 % всех операционных
систем в мире выполнялись на виртуальных машинах, к 2018 году
ожидается, что эта доля достигнет 86 %. По данным [6], по состоя-
нию на апрель 2012 года 59 % средних и крупных российских компа-
ний уже внедрили либо собираются внедрить в ближайшем будущем
виртуализацию корпоративных серверов, при этом для серверов баз
данных эта доля составляет 80 %.

Основная причина, объясняющая рост интереса к виртуализа-
ции операционных систем, носит чисто экономический характер. До
примерно 2006 года содержание виртуальной машины обходилось
дороже, чем содержание реального физического компьютера с те-
ми же характеристиками, другими словами, высокопроизводитель-
ный сервер приложений, способный поддерживать N виртуальных
серверов меньшей мощности, обходился организации дороже, чем
N физических серверов меньшей мощности. Но затем развитие ин-
формационных технологий (прежде всего, введение аппаратной под-
держки гипервизоров в новых процессорах и чипсетах) привело к
резкому снижению фактической стоимости виртуальных машин, в
результате реальные компьютеры стали вытесняться виртуальны-
ми машинами, физически размещаемыми на высокопроизводитель-
ных серверах приложений. Важно отметить, что речь здесь идет
не только и не столько о цене оборудования, сколько о значитель-
ном снижении эксплуатационных затрат. Так, в некоторых странах
важнейшим преимуществом виртуализации серверов считается сни-
жение потребления дорогостоящей электроэнергии.

Если два или более корпоративных серверов представляют со-
бой виртуальные машины, работающие на одном физическом сер-
вере, аппаратные ресурсы сервера распределяются между парал-
лельно выполняющимися машинами-задачами более эффективно.
Пусть, например, в некоторый момент времени почтовый сервер ор-
ганизации простаивает, а веб-сервер испытывает большой наплыв
посетителей. Если каждый из этих серверов физически размещен
на своем отдельном компьютере, то веб-сервер в такой ситуации бу-
дет работать с перегрузкой, в результате чего запросы клиентов к

170 Г л а в а 7

нему будут выполняться с большими задержками. Если же оба сер-
вера являются виртуальными машинами, работающими на одном
и том же физическом компьютере, этот компьютер сможет динами-
чески перераспределять свои аппаратные ресурсы, отдавая большую
часть своего процессорного времени, оперативной памяти и пропус-
кной способности сетевых интерфейсов тому виртуальному серверу,
которому эти ресурсы нужнее в данный момент. Особенно большой
выигрыш производительности достигается, когда на одном физичес-
ком сервере размещается несколько виртуальных серверов, активно
взаимодействующих между собой по локальной сети. В таких слу-
чаях виртуализации могут подвергаться целые сегменты корпора-
тивной сети, что не только многократно ускоряет обмен данными,
но и приводит к заметному сокращению количества, ассортимента
и суммарной стоимости сетевого оборудования, эксплуатируемого в
организации.

В случае серьезного аппаратного сбоя на физическом сервере,
обслуживающем несколько виртуальных машин, перенос этих ма-
шин на другой, исправный сервер, как правило, сводится к просто-
му копированию файлов и последующему запуску скопированных
виртуальных машин на новом сервере. Это позволяет сокращать
время простоя системы при аппаратных сбоях, упрощает обновление
аппаратного обеспечения корпоративных серверов. Создание резер-
вных копий информации и восстановление с них информации для
виртуальных машин реализуется намного проще, чем для реальных
физических компьютеров, особенно если при этом применяется спе-
циально разработанное для таких случаев программное обеспечение.

На первый взгляд, виртуализация операционных систем может
показаться новой революционной технологией, но на самом деле в
ней нет ничего принципиально нового, это просто дальнейшее разви-
тие концепций, характеризовавших развитие операционных систем
на протяжении последних десятилетий. Первые виртуальные ма-
шины были реализованы еще в операционной системе IBM VM, раз-
работанной для мейнфрейма IBM/370 (в России клон этого компью-
тера серийно производился под названием ЕС-1045). Фактически,
IBM VM представляла собой не полноценную операционную систе-
му, способную поддерживать функционирование собственных при-
ложений, а специализированный гипервизор виртуальных машин,
подобный современному VMWare ESX.

Начиная с первой половины 1990-х годов, в операционных систе-
мах персональных компьютеров практически не используется пря-
мое обращение процессоров к оперативной памяти по явно указы-

Виртуализация операционных систем 171

ваемым физическим адресам. Вместо этого популярные системы
машинных команд используют сложные алгоритмы многоуровневой
трансляции адресов, по сути виртуализирующие оперативную памя-
ть компьютера для всех видов прикладного и системного програм-
много обеспечения за исключением небольшого фрагмента ядра опе-
рационной системы, выступающего в роли гипервизора оперативной
памяти. Аналогично, драйверы, являющиеся обязательными пос-
редниками при доступе прикладного программного обеспечения к
аппаратным устройствам компьютера, могут рассматриваться как
гипервизоры, виртуализирующие аппаратное обеспечение компью-
тера. Часто такая виртуализация оказывается настолько удобной,
что многие начинают воспринимать виртуальное отображение того
или иного аппаратного устройства как единственно верную объек-
тивную реальность. Например, мало кто знает, что PS/2-клавиатура
и PS/2-мышь с точки зрения чипсета компьютера управляются од-
ним и тем же контроллером и фактически представляют собой еди-
ное аппаратное устройство. Прикладные и системные программы,
взаимодействующие с клавиатурой и мышью, реально взаимодейс-
твуют с драйверами логической клавиатуры и логической мыши,
создающими для единого физического устройства «PS/2-порт» два
виртуальных образа: «клавиатура» и «мышь», и тем самым вирту-
ализирующими данное устройство.

Таким образом, полная виртуализация одной операционной сис-
темы в другой операционной системе является всего лишь расши-
рением множества «малых виртуализаций», буквально пронизыва-
ющих современные информационные технологии. При этом виру-
тализация операционных систем не является конечной точкой на
пути виртуализации, облачные технологии обработки данных могут
рассматриваться как еще более далекое развитие данной концеп-
ции. Заметим, впрочем, что рассмотрение вопросов безопасности
при облачной обработке данных выходит за рамки данного учебно-
го пособия.

Распространение виртуализации породило целый ряд новых
проблем в деле обеспечения безопасности операционных систем. На-
иболее серьезной из них является проблема «погружения операци-
онной системы в матрицу», когда нарушитель несанкционирован-
но устанавливает на атакуемом компьютере программу-гипервизор,
превращающую операционную систему реального компьютера в опе-
рационную систему виртуальной машины, работающей под управле-
нием данного гипервизора. В этом случае несанкционированно уста-
новленный гипервизор получает полный контроль над всеми инфор-

172 Г л а в а 7

мационными потоками внутри атакованной системы. Обнаружение
такого гипревизора «изнутри матрицы» возможно только по нена-
дежным косвенным признакам. При этом код гипервизора может
размещаться не только на жестком диске компьютера, но и в дол-
говременной памяти одной или нескольких микросхем материнской
платы. Известны опытные образцы таких гипервизоров, и есть ос-
нования полагать, что существуют и «боевые» версии программных
закладок в флэш-память микросхем компьютера (в обиходе эту па-
мять часто называют BIOS, хотя базовая система ввода-вывода, как
правило, занимает в ней ничтожную долю объема). Многим па-
мятна история с так называемыми китайскими закладками [20] в
южном мосту одного семейства материнских плат, производимых
компанией Intel.

Разместить скрытый гипервизор в долговременной памяти мик-
росхемы обычно возможно только в заводских условиях при актив-
ном участии разработчика этой микросхемы. Но программно реа-
лизованный гипервизор может быть внедрен в операционную сис-
тему с использованием тех же схем, по которой внедряются другие
программные закладки режима ядра. Самая знаменитая из таких
закладок-гипервизовров, известная под названием Blue Pill (голубая
пилюля, очевидная аллюзия на фильм «Матрица»), была разрабо-
тана Йоанной Рутковской и Александром Терешкиным и впервые
продемонстрирована в 2006 году. Первоначально закладка работала
только на процессорах AMD под операционной системой Windows
Vista (возможно, правильнее говорить «над», а не «под») и отлича-
лась от классических руткитов только принципом реализации, но
не поддерживаемой функциональностью. Версия Blue Pill, работа-
ющая на процессорах Intel, появилась позже.

Существует ряд методов, позволяющих с некоторой долей уве-
ренности определить, работает ли операционная система «на голом
железе» или внутри виртуальной машины. Большинство этих ме-
тодов основываются на том, что работа гипервизора несколько сни-
жает быстродействие аппаратного обеспечения. Скрыть этот факт
средствами гипервизора невозможно. Даже если гипервизор будет
манипулировать скоростью хода системного таймера, то обращение
к другому таймеру, внешнему по отношению к проверяемой систе-
ме, позволит обнаружить замедление хода времени внутри системы
и тем самым демаскировать гипервизор.

В целом обнаружение руткитов, подобных Blue Pill, является
намного более сложной задачей, чем обнаружение обычных рутки-
тов. Подобная закладка может быть выявлена только лишь путем

Виртуализация операционных систем 173

анализа очень тонких нюансов работы компьютерной системы (точ-
ные времена выполнения определенных машинных команд, точные
количества экземпляров определенных системных структур в физи-
ческой памяти компьютера и т. п.). При этом разработчик алгорит-
ма выявления закладки вынужден полагаться на тонкие недокумен-
тированные особенности конкретной версии защищаемой системы,
которые могут быть изменены ее разработчиками в любой момент.
Стоит отметить, что, вопреки распространенному мнению, детектор
виртуализации Red Pill, разработанный Йоанной Рутковской, не об-
наруживает факта собственного выполнения в виртуальной среде
Blue Pill.

По состоянию на сегодняшний день несанкционированно уста-
навливаемые гипервизоры еще не получили широкого распростра-
нения. В основном это связано с техническими сложностями раз-
работки и отладки данного программного обеспечения, а также с
необходимостью достаточно жесткой его привязки к индивидуаль-
ным особенностям аппаратного обеспечения, установленного в ата-
куемой системе.

Наличие в защищаемой сети большого количества виртуальных
машин предъявляет повышенные требования к качеству управления
безопасностью корпоративной сети. В первую очередь речь здесь
идет о повышенных требованиях к безопасности серверов прило-
жений, на которых разворачиваются виртуальные машины. Если
корпоративная сеть построена на обычных физических серверах, то
взлом любого из них возможен только тогда, когда атака наруши-
теля направлена на данный конкретный сервер. Но в сети, постро-
енной на небольшом количестве высокопроизводительных серверов,
захват контроля над любым из них может предоставить нарушите-
лю одномоментный несанкционированный доступ к десяткам крити-
чески важных виртуальных машин, что может иметь катастрофи-
ческие последствия. При неблагоприятном стечении обстоятельств
одна-единственная критическая уязвимость в гипервизоре сервера
виртуальных машин может отдать под контроль нарушителя боль-
шой сегмент корпоративной сети или даже всю корпоративную сеть.

Другой серьезной проблемой безопасности является проблема
неуправляемых виртуальных машин. В любой достаточно большой
корпоративной сети рано или поздно появляются всеми забытые сер-
веры, не удостаивающиеся внимания администраторов на протяже-
нии многих месяцев или даже лет. Программное обеспечение таких
серверов, как правило, никогда не обновляется, а политика безопас-
ности, реализуемая операционной системой, может сильно расходи-

174 Г л а в а 7

ться с корпоративными стандартами. В целом такие компьютеры
обычно защищены хуже других, и часто становятся первой жертвой
вирусной эпидемии или хакерской атаки.

Если корпоративная сеть построена традиционным образом, с
использованием обычных физических компьютеров, вероятность по-
явления в ней неуправляемого сервера сравнительно невелика. Но
если в корпоративной сети одновременно работают сотни и тысячи
виртуальных машин, появление среди них нескольких неуправляе-
мых вполне вероятно. Кроме того, на неуправляемых виртуальных
машинах гораздо чаще, чем на физических компьютерах, встреча-
ются совершенно незащищенные операционные системы с зияющи-
ми брешами в политике безопасности. Чаще всего такие машины
возникают из «несанкционированно оживленных» резервных копий
и снапшотов других виртуальных машин. Иногда администратор,
добавив в корпоративную сеть временный сервер для эксперимен-
тов, забывает его выключить, когда необходимость в таком сервере
отпадает. Иногда неуправляемые машины возникают из-за «несан-
кционированного клонирования» виртуальной машины, когда она
копируется с неисправного сервера на исправный, затем работоспо-
собность неисправного сервера восстанавливается и его виртуаль-
ные машины автоматически перезапускаются. В результате в сети
появляется второй клон виртуальной машины, на который никто
не обращает внимания до тех пор, пока он не начнет упоминаться
в отчетах корпоративной системы обнаружения вторжений. Кроме
того, в корпоративной сети, включающей в себя много виртуальных
машин, заметно сложнее решается задача своевременной установки
обновлений программного обеспечения на все компьютеры защища-
емой сети.

Виртуальная машина, находящаяся в выключенном состоянии,
практически неспособна противодействовать несанкционированно-
му доступу к своим ресурсам. Если, например, нарушитель нач-
нет несанкционированно копировать файлы виртуальной машины
за пределы защищаемой сети, операционная система виртуальной
машины никак не сможет противодействовать этому. В сети, пос-
троенной традиционным образом, угроза кражи нарушителем фи-
зического сервера гораздо менее актуальна, чем угроза несанкцио-
нированного копирования виртуальной машины, а угроза несанкци-
онированного копирования физического сервера практически нере-
ализуема.

Файлы виртуальных машин могут копироваться администрато-
рами с одних серверов приложений на другие, иногда эти действия

Виртуализация операционных систем 175

остаются незамеченными администраторами безопасности. В резу-
льтате администратор безопасности не всегда адекватно представ-
ляет себе топологию защищаемой сети, порядок маршрутизации се-
тевого трафика внутри нее. Это предъявляет повышенные требо-
вания к политикам защиты сетевого трафика от перехвата, навязы-
вания и блокирования. Дополнительные проблемы создает невоз-
можность применения некоторых реализаций пакетных фильтров
и систем обнаружения вторжений к виртуальному сетевому трафи-
ку, не выходящему за пределы единственного физического сервера.
Подключение сенсоров систем обнаружения вторжений к физичес-
кому трафику, циркулирующему между хост-серверами, как пра-
вило, малоэффективно, поскольку в этом случае трафик выглядит
как обезличенный поток разнородных сетевых пакетов, в котором
крайне затруднительно определить принадлежность того или иного
пакета к конкретной виртуальной машине и, тем более, к конкрет-
ной сетевой сессии.

При внедрении вредоносного программного обеспечения в кор-
поративную сеть, построенную на виртуальных машинах, програм-
мная закладка может интегрироваться внутрь особой виртуальной
машины, специально предназначенной для того, чтобы быть кон-
тейнером для программной закладки или для временного хранения
конфиденциальной информации, подготовленной к отправке нару-
шителю. Если виртуальных машин в сети много, выявить среди них
одну вредоносную может быть непростой задачей.

Несмотря на все вышеизложенное, было бы неверно рассматри-
вать виртуализацию как фактор, влияющий на безопасность опера-
ционных систем однозначно негативным образом. Существует це-
лый ряд средств, методов и технологий обеспечения информацион-
ной безопасности, реализация которых без применения виртуализа-
ции операционных систем была бы серьезно затруднена или вообще
невозможна.

При реализации антивирусной защиты операционных систем се-
рьезной проблемой является то, что в случае успешного внедрения
руткита в защищаемую систему его вредоносный код выполняется
на том же самом уровне привилегированности, что и код ядра опе-
рационной системы, при этом данный уровень является наиболее
привилегированным из всех поддерживаемых операционной систе-
мой. Но включение на процессоре режима аппаратной виртуализа-
ции дает возможность включать в операционную систему еще более
привилегированный программный код. Традиционно уровни при-
вилегированности процессоров Intel и AMD обозначаются целыми

176 Г л а в а 7

числами от 0 до 3, при этом нулевому уровню, на котором должно
выполняться ядро операционной системы, соответствует наивысший
уровень привилегированности, предоставляющий программному ко-
ду наибольшие возможности. Программный код, выполняющийся
на этом уровне, может, в частности, виртуализировать среду выпол-
нения программного кода, выполняющегося на 1-3 уровнях приви-
легированности, и выступать для него в роли гипервизора. Режим
гипервизора (VT-x для процессоров Intel и AMD-V для процессоров
AMD) позволяет программному коду, выполняющемуся в этом ре-
жиме, выступать в роли гипервизора для программного кода нуле-
вого кольца. Из-за этого режим гипервизора часто называют минус
первым кольцом защиты. Режим системного управления (System
Management Mode, SMM), в котором работает Blue Pill, фактичес-
ки является минус вторым кольцом защиты, а режим vPro/AMT —
минус третьим кольцом защиты. Заметим, что программный код,
работающий в режиме SMM, должен размещаться в особой области
оперативной памяти SMRAM, которая в подавляющем большинстве
чипсетов, изготовленных после 2006 года, недоступна постороннему
коду. Руткит Blue Pill при проникновении в SMRAM фактически
эксплуатировал аппаратную уязвимость, повсеместно устраненную
после того, как этот руткит стал широко известен. Начиная с 2009
года, достоверной информации об уязвимостях, позволяющих несан-
кционированно внедрять в SMRAM вредоносный код, в открытых
источниках не обнаруживается.

Поддержка дополнительных колец защиты позволяет разработ-
чику защищенной операционной системы в полной мере реализо-
вать концепцию доверенного микроядра, когда суммарный объем
доверенного кода, которому присваивается наивысший уровень при-
вилегированности, делается минимальным. В такой операционной
системе большая часть кода ядра, все модули расширения ядра и все
драйверы устройств выполняются на уровне привилегированности,
строго более низком, чем у доверенной части ядра. Это серьезно
затрудняет искажение информационных потоков ядра вредоносным
программным кодом, например, с целью сокрытия своего присут-
ствия в системе. Впрочем, построение ядра операционной системы
на базе концепции доверенного микроядра является весьма сложной
задачей, имеющей на данным момент удовлетворительные решения
только для простейших вырожденных случаев (встроенные опера-
ционные системы сетевых коммутаторов, аппаратных шифраторов
и т. п.).

Гораздо более простым с технической точки зрения является ре-

Виртуализация операционных систем 177

шение, при котором в дополнительные кольца защиты помещается
сравнительно компактный программный код, не реализующий ос-
новные функции подсистемы безопасности операционной системы,
а всего лишь контролирующий корректность их функционирова-
ния. В этом случае ядро операционной системы по-прежнему рабо-
тает в нулевом кольце защиты и по-прежнему является уязвимым
для вредоносных драйвером и модулей расширения ядра. Но если
вредоносный код начнет искажать информационные потоки ядра,
это искажение, скорее всего, будет замечено контролирующим прог-
раммным кодом, неуязвимым для программных закладок. Чуть бо-
лее сложным для программной реализации является решение, ког-
да программный код, выполняющийся в дополнительных кольцах
защиты, автоматически получает управление при наступлении оп-
ределенного события (например, при появлении в системе нового
программного файла) и выполняет некоторые действия, связанные с
наступившим событием (например, проверяет новый файл на нали-
чие вредоносного кода). При этом программный код обработчиков
таких событий может размещаться не непосредственно в гиперви-
зоре, а внутри вспомогательной виртуальной машины, специально
предназначенной для решения задач, связанных с безопасностью, и
недоступной пользователям напрямую. Существует несколько прог-
раммных продуктов (наиболее известны VMware VShield EndPoint
и TrendMicro Deep Security), позволяющих размещать на сервере
виртуальных машин особую виртуальную машину, внутри которой
находится антивирусный комплекс, защищающий другие виртуаль-
ные машины, расположенные на том же сервере.

Рассматриваемая концепция позволяет включать в состав под-
системы безопасности сервера виртуальных машин готовые прог-
раммные решения, изначально предназначенные для обеспечения
безопасности операционных систем физических компьютеров. Фак-
тически, здесь происходит виртуализация функций обеспечения без-
опасности виртуальных машин.

Серьезным препятствием на пути практической реализации
данного подхода является то, что гипервизор обычно не имеет пол-
ной информации о высокоуровневом контексте действий, выполня-
емых в виртуальных машинах, работающих под его управлением.
Гипервизор знает во всех подробностях, какие машинные команды
выполняются на каких виртуальных процессорах, к каким областям
виртуальной памяти и к каким виртуальным устройствам делаются
обращения, но с какой целью и в каком контексте выполняются все
эти операции — эта информация гипервизору, как правило, недос-

178 Г л а в а 7

тупна. Некоторые атаки на виртуальные машины вообще не могут
быть обнаружены гипервизором, не обладающим полноценным ис-
кусственным интеллектом. Поэтому перенос функций безопасности
из ядра операционной системы в гипервизор нельзя рассматривать
как панацею. Это решение повышает надежность многих функций
подсистемы безопасности операционной системы, делает ее более ус-
тойчивой к применению вредоносным кодом стелс-технологий, но
многие опасные действия из гипервизора попросту не видны. В це-
лом функции безопасности, реализованные в гипервизоре, должны
рассматриваться только как дополнение, но не как замена функций
безопасности, реализованных в ядре операционной системы.

Кроме того, не вполне очевидным является то, каким образом
виртуальная машина, обычно даже не знающая, что она работает
под гипервизором, будет передавать гипервизору оповещения о по-
тенциально опасных событиях, решения по которым должен при-
нимать гипервизор. Существуют два основных подхода к решению
этой задачи:

1) повышение интеллектуальности гипервизора, внесение в не-
го элементов эвристического поведения, характерного для систем
обнаружения вторжений. В этом случае гипервизор рассматривает
элементарные события функционирования виртуальной машины не
каждое по отдельности, а в совокупности, что позволяет ему обна-
руживать попытки нарушения безопасности на основе сигнатурных
или эвристических правил. Фактически, такой гипервизор эквива-
лентен системе обнаружения вторжений, перехватывающей все ин-
формационные потоки, связывающие защищаемую операционную
систему с окружающим миром. Серьезным недостатком данного
подхода является то, что против гипервизора, построенного на его
основе, хорошо работают средства и методы, традиционно приме-
няемые программными закладками для противодействия системам
обнаружения вторжений. Кроме того, некоторые функции безопас-
ности, реализуемые внутри защищаемой виртуальной машины (на-
пример, прозрачное шифрование тех или иных информационных
потоков) могут серьезно затруднять работу такого гипервизора [16];

2) установка внутри защищаемой виртуальной машины специа-
льного программного агента, явно оповещающего гипервизор о не-
обходимости выполнить ту или иную проверку безопасности. Дан-
ный подход лишен недостатков предыдущего, но имеет очень серьез-
ную слабость — агент оповещения гипервизора уязвим для воздейс-
твий вредоносного кода, захватившего контроль над виртуальной
машиной.

Виртуализация операционных систем 179

Когда технологии переноса инструментов обеспечения безопас-
ности в гипервизор только начинали входить в обиход, некоторые
эксперты высказывали предположения, что многократные передачи
управления из виртуальной машины в гипервизор и обратно будут
существенно ухудшать производительность операционной системы.
Однако практический опыт показывает, что потери производитель-
ности в этом случае не превышают 20 %, а некоторые антивирусные
комплексы на уровне гипервизора работают даже быстрее, чем внут-
ри защищаемой виртуальной машины [13]. А если на одном сервере
одновременно работает порядка ста виртуальных машин, затраты
аппаратных ресурсов на антивирусное сканирование могут сокра-
щаться в десятки раз [9].

Еше более радикальное улучшение результатов может быть дос-
тигнуто при переносе в гипервизор антивирусных мониторов, об-
наруживающих вредоносный код в динамике путем отслеживания
подозрительных информационных потоков. Выполняясь на уровне
гипервизора, такой монитор может обнаруживать некоторые собы-
тия, характерные для активизации эксплойтов, обнаружить которые
изнутри защищаемой системы затруднительно. К таким событиям
относятся, например, следующие:
• установка атрибута «разрешается выполнять программный

код» на логическую страницу памяти, в которую ранее были
считаны данные с внешнего носителя информации или сетево-
го устройства (за исключением легальной процедуры загрузки
программного файла для исполнения);

• выполнение в режиме ядра программного кода, расположенного
в младшей части адресного пространства, доступной в режиме
пользователя;

• выполнение большого количества подряд идущих команд nop;
• выполнение программного кода, размещенного внутри логичес-

кой страницы, внутри которой также находится вершина стека.
На протяжении всей эволюции операционных систем характер-

ной тенденцией было стремление к все более полной изоляции вы-
полняющихся в системе процессов друг от друга. Виртуализация
позволяет довести эту тенденцию до логического завершения — вы-
полнять каждый процесс в собственной виртуальной машине, имею-
щей не только свое собственное виртуальное адресное пространство,
но и полный набор виртуальных внешних устройств. Взаимодейс-
твие процессов в такой системе может быть реализовано посредст-
вом интерфейсов, традиционно применяемых для организации вза-
имодействия процессов, выполняющихся на разных компьютерах:

180 Г л а в а 7

именованных каналов, сокетов и т. п. Такая схема построения опе-
рационной системы затрудняет функционирование в ней програм-
мных закладок, но рассматривать ее как панацею не следует. Все
трудности построения программной закладки, способной эффектив-
но функционировать в такой среде, вполне преодолимы при нали-
чии у разработчиков закладки соответствующих ресурсов и мотива-
ции. Тем не менее, инкапсуляция недоверенных процессов в вирту-
альные машины является потенциально перспективным направле-
нием развития тех операционных систем, к которым предъявляют-
ся повышенные требованиями в отношении безопасности хранимых
и обрабатываемых данных. Уже существует несколько прототипов
практической реализации данной концепции, одним из наиболее ин-
тересных является операционная система Qubes [26], основанная на
ядрах Linux, работающих под управлением гипервизора Xen. В сос-
тав Qubes входит специализированный X-сервер, создающий у по-
льзователя полную иллюзию того, что он работает с единственным
экземпляром операционной системы Linux.

Вопросы для самопроверки
1. Почему виртуализация операционных систем получила в последние годы

такое широкое распространение?
2. Как виртуализация операционных систем позволяет оптимизировать рас-

пределение нагрузки на используемое аппаратное обеспечение?
3. В какой операционной системе были разработаны первые виртуальные

машины?
4. В чем заключается угроза несанкционированной установки гипервизора

на атакуемом компьютере?
5. Какие программные закладки, реализующие функциональность гипер-

визора, вы знаете?
6. Какие дополнительные требования к качеству управления безопаснос-

тью предъявляются при наличии в защищаемой сети большого количества вир-
туальных машин?

7. В чем заключается угроза безопасности корпоративной сети от неуправ-
ляемых виртуальных машин?

8. В чем заключается угроза бесконтрольного копирования администрато-
рами файлов выключенных виртуальных машин?

9. Какие дополнительные средства, методы и технологии обеспечения ин-
формационной безопасности могут реализовываться с использованием виртуа-
лизации операционных систем?

10. Как поддержка дополнительных колец защиты влияет на возможности
реализации в операционной системе доверенного микроядра?

11. Как можно использовать для защиты виртуальных машин служебные
виртуальные машины, работающие на том же самом сервере приложений, что
и защищаемые виртуальные машины?

12. В чем заключается основная проблема, затрудняющая перенос в гипер-
визор части защитных функций операционной системы, предназначенной для

Виртуализация операционных систем 181

обслуживания виртуальной машины? Какие два основных подхода к решению
этой проблемы применяются на практике?

13. Какие дополнительные возможности предоставляет антивирусному мо-
нитору полный или частичный перенос его функциональности в гипервизор?

14. Каких преимуществ позволяет добиться инкапсуляция недоверенных
процессов операционной системы в отдельные виртуальные машины?

Приложение

Методические рекомендации по организации
изучения дисциплины «Защита в операционных
системах»

Анализ требований ФГОС ВПО

Рассмотрим требования ФГОС ВПО третьего поколения по на-
правлению подготовки «Информационная безопасность» (квалифи-
кации бакалавр, специалист и магистр), на выполнение которых
ориентировано изучение материала данного учебного пособия.

Наиболее глубокие знания вопросов защиты в операционных
системах требуются при обучении по специальности 10.05.01 —
«Компьютерная безопасность» (квалификация — специалист).
Закончив обучение по данной специальности, выпускник должен об-
ладать, в том числе, следующими компетенциями:
• способностью применять современные методы и средства иссле-

дований для обеспечения информационной безопасности ком-
пьютерных систем;

• способностью проводить обоснование и выбор рационального
решения по уровню обеспечения информационной безопасности
компьютерной системы с учетом заданных требований;

• способностью проводить анализ проектных решений по обеспе-
чению безопасности компьютерных систем;

• способностью участвовать в разработке системы защиты инфор-
мации предприятия (ведомства, подразделения) и подсистемы
информационной безопасности компьютерной системы;

• способностью к проведению экспериментального исследования
компьютерных систем с целью выявления уязвимостей;

• способностью разрабатывать предложения по совершенствова-
нию системы управления информационной безопасностью ком-
пьютерной системы;

• способностью производить установку, тестирование програм-
много обеспечения и программно-аппаратных средств по обес-
печению информационной безопасности компьютерных систем;

Приложение 183

• способностью принимать участие в эксплуатации программно-
го обеспечения и программно-аппаратных средств обеспечения
информационной безопасности компьютерных систем.
Для реализации перечисленных компетенций в части, касаю-

щейся операционных систем, в результате изучения дисциплины
«Защита в операционных системах» студент должен:
• знать защитные механизмы и средства обеспечения безопасно-

сти операционных систем;
• уметь формулировать и настраивать политику безопасности ос-

новных операционных систем, а также локальных компьютер-
ных сетей, построенных на их основе;

• владеть навыками разработки программных модулей, реализу-
ющих задачи, связанные с обеспечением безопасности операци-
онных систем распространенных семейств.
Закончив обучение по специальности 10.05.02 — «Информа-

ционная безопасность телекоммуникационных систем», вы-
пускник должен обладать в том числе следующими компетенциями:
• способностью проводить анализ проектных решений по обеспе-

чению безопасности телекоммуникационных систем;
• способностью оценивать эффективность систем защиты инфор-

мации в телекоммуникационных системах;
• способностью осуществлять аудит уровня защищенности и ат-

тестацию телекоммуникационных систем в соответствии с су-
ществующими нормами;

• способностью принимать участие в эксплуатации системы обес-
печения информационной безопасности телекоммуникационных
систем;

• способностью проводить мониторинг, техническую диагностику
средств защиты, оценку эффективности информационной без-
опасности защищенных телекоммуникационных систем;

• способностью выявлять и прогнозировать угрозы информаци-
онной безопасности телекоммуникационных систем и разраба-
тывать меры противодействия.
Для их реализации в части, касающейся операционных систем,

студент должен в результате изучения дисциплин профессиональ-
ного цикла:
• знать программно-аппаратные средства обеспечения информа-

ционной безопасности в типовых операционных системах;
• уметь развертывать, конфигурировать, администрировать опе-

рационные системы вычислительных систем;

184 Приложение

• уметь обеспечивать защиту от разрушающих программных воз-
действий.
Закончив обучение по специальности 10.05.03 — «Информа-

ционная безопасность автоматизированных систем», выпус-
кник должен обладать в том числе следующими компетенциями:
• способностью проводить анализ защищенности автоматизиро-

ванных систем;
• способностью разрабатывать политики информационной без-

опасности автоматизированных систем;
• способностью участвовать в проектировании средств защиты

информации и средств контроля защищенности автоматизиро-
ванной системы;

• способностью организовать эксплуатацию автоматизированной
системы с учетом требований информационной безопасности;

• способностью обеспечить эффективное применение средств за-
щиты информационно-технологических ресурсов автоматизиро-
ванной системы;

• способностью администрировать подсистему информационной
безопасности автоматизированной системы;

• способностью управлять информационной безопасностью авто-
матизированной системы.
Для их реализации в части, касающейся операционных систем,

студент должен в результате изучения дисциплин профессиональ-
ного цикла:
• знать принципы построения и функционирования, примеры ре-

ализаций современных операционных систем;
• знать программно-аппаратные средства обеспечения информа-

ционной безопасности в типовых операционных систем;
• владеть навыками установки и настройки операционных систем

семейств Windows и UNIX с учетом требований по обеспечению
информационной безопасности.
Закончив обучение по специальности 10.05.04 — «Инфор-

мационно-аналитические системы безопасности», выпускник
должен обладать в том числе следующими компетенциями:
• способностью применять основные защитные механизмы и сред-

ства обеспечения безопасности операционных систем;
• способностью выявлять основные угрозы безопасности инфор-

мации, строить и исследовать модели нарушителя в компью-
терных системах;

• способностью разрабатывать защитные механизмы и средства
обеспечения информационной безопасности.

Приложение 185

Для их реализации студент должен в результате изучения дис-
циплин профессионального цикла:
• знать принципы построения современных операционных систем

и особенности их применения;
• знать основные виды и угрозы безопасности операционных сис-

тем;
• знать защитные механизмы и средства обеспечения безопасно-

сти операционных систем;
• владеть навыками разработки программных модулей, реализу-

ющих задачи, связанные с обеспечением безопасности операци-
онных систем распространенных семейств.
Студенты, осваивающие квалификацию бакалавр направления

подготовки 10.03.01 — «Информационная безопасность», дол-
жны реализовать в ходе обучения следующие компетенции:
• способность формировать комплекс мер (правила, процедуры,

практические приемы и пр.) для управления информационной
безопасностью;

• способность участвовать в работах по реализации политики ин-
формационной безопасности;

• способен выполнять работу по самостоятельному построению
алгоритмов, проведению их анализа и реализации в современ-
ных программных комплексах;

• способен проводить экспериментальное исследование компью-
терных систем с целью выявления уязвимостей.
При этом студенты, обучающиеся по профилю подготовки «Без-

опасность автоматизированных систем», должны, кроме того, реа-
лизовать компетенцию:
• способность выполнять комплекс задач администрирования

подсистем информационной безопасности операционных систем,
систем управления базами данных, компьютерных сетей.
Для реализации указанных компетенций студент (квалифика-

ции бакалавр) в результате изучения дисциплин профессионального
цикла должен:
• уметь формулировать и настраивать политику безопасности

распространенных операционных систем, а также локальных
вычислительных сетей, построенных на их основе;

• владеть методами и средствами выявления угроз безопасности
автоматизированным системам.
Обучающийся по уровню подготовки магистр должен реали-

зовать, в том числе, следующие компетенции:

186 Приложение

• способность анализировать фундаментальные и прикладные
проблемы информационной безопасности в условиях становле-
ния современного информационного общества;

• способность анализировать угрозы информационной безопасно-
сти объектов и разрабатывать методы противодействия им.
Для реализации указанных компетенций студент должен:

• знать основные принципы организации технического, програм-
много и информационного обеспечения защищенных информа-
ционных систем;

• уметь обосновывать принципы организации технического, прог-
раммного и информационного обеспечения информационной
безопасности.
Таким образом, изучение на основе предлагаемого пособия воп-

росов защиты информации в операционных системах способствует
освоению знаний и умений, направленных на реализацию компетен-
ций в соответствии с ФГОС ВПО третьего поколения по направле-
нию подготовки «Информационная безопасность» (квалификации
бакалавр, специалист и магистр). Закрепление теоретических зна-
ний о средствах и методах заищты информации в операционных
системах, практических навыков их использования и окончатель-
ное формирование компетенций предусматривается в процессе про-
изводственных и преддипломных практик, а также при выполнении
дипломной работы.

Организация изучения дисциплины
«Защита в операционных системах»

Изучение дисциплины «Защита в операционных системах» ос-
новано на дисциплинах «Информатика», «Аппаратные средства вы-
числительной техники», «Операционные системы».

Знания и практические навыки, полученные при изучении дис-
циплины «Защита в операционных системах», обеспечивают освое-
ние дисциплин «Модели безопасности компьютерных систем», «Ос-
новы построения защищенных сетей», а также используются обуча-
емыми при разработке курсовых и дипломных работ.

Преподавателю важно учесть, что материал пособия имеет
практическую направленность, при этом набольшее значение для
его усвоения имеют практические занятия, на которых студенты не-
посредственно усваивают преподаваемые умения и навыки. Особен-
но полезны в этом плане лабораторные работы, при выполнении
которых студенты вырабатывают практические навыки управления
безопасностью современных операционных систем.

Приложение 187

В теме «Понятие защищенной операционной системы» студен-
ты должны твердо уяснить наиболее общие положения, на которых
основывается весь дальнейший материал. Студенты должны чет-
ко понимать, что защищенность операционной системы находится
в обратной зависимости с ее эксплуатационными качествами, что
адекватная политика безопасности не всегда обеспечивает наибо-
лее высокий уровень защищенности, что процесс формирования и
сопровождения адекватной политики безопасности является весьма
растянутым во времени и никогда полностью не завершается.

Тема «Управление доступом» является наиболее сложной в дан-
ном пособии. Это связано с тем, что здесь дается большой объ-
ем специальной терминологии (субъект, объект, метод, право, при-
вилегия), рассматриваются сложные структуры данных (дескрип-
торы защиты, маркеры доступа), излагаются сложные алгоритмы
(проверки прав доступа, динамического изменения полномочий су-
бъекта, наследования атрибутов защиты, построения ограниченных
маркеров доступа). Излагая материал данной темы, преподаватель
должен постоянно отслеживать ответную реакцию аудитории и, при
необходимости, излагать те или иные фрагменты курса менее под-
робно, а возможно, даже пропускать фрагменты, наиболее сложные
для понимания. Особое внимание следует уделить освоению студен-
тами на практических занятиях и лабораторных работах практичес-
ких навыков управления разграничением доступа. Опыт препода-
вания данной дисциплины показывает, что после двух-трех прак-
тических занятий в компьютерном классе у большинства студентов
наступает «просветление» и те концепции управления доступом, ко-
торые раньше казались им невероятно сложными, становятся прос-
тыми, понятными и «естественными». По окончании данной темы
целесообразно провести контрольную работу.

Тема «Идентификация и аутентификация», напротив, не вызы-
вает у студентов серьезных затруднений. Единственным проблем-
ным местом является система библиотек PAM операционной систе-
мы Linux, устроенная весьма нетривиально и предполагающая до-
вольно сложную процедуру настройки администратором. Если ин-
теллектуальный уровень аудитории невысок, соответствующий ма-
териал можно опустить.

Тема «Аудит» также не вызывает у студентов серьезных зат-
руднений. Для выработки понимания концепций аудита и навыков
работы с аудитом вполне достаточно одной лекции и двух практи-
ческих занятий, отведенных на данную тему тематическим планом.

В теме «Домены Windows» следует обратить особое внимание на

188 Приложение

получение слушателями практических навыков администрирования
доменов Windows и управления политикой безопасности в доменах
Windows. При изложении материала данной темы целесообразно
сконцентрироваться на рассмотрении типовых процедур админист-
рирования, не вдаваясь в излишние подробности доменной архитек-
туры сетей Windows.

В последних двух главах данного учебного пособия описывают-
ся сравнительно новые аспекты обеспечения информационной без-
опасности операционных систем. Традиция преподавания этих ас-
пектов пока еще не сформировалась, преподавателю предлагается
разработать соответствующую методику самостоятельно. Если при
изучении данных тем у студентов возникают затруднения, соответ-
ствующий материал можно опустить.

В соответствии со спецификой вуза, со специальностью и квали-
фикацией, реализуемыми образовательной программой, в процессе
изучения защиты в операционных системах методически целесооб-
разно из каждого раздела дисциплины выделить наиболее важные
подразделы и акцентировать на них внимание. При этом возможно
сокращение времени на анализ рассмотренных в пособии вопросов
и использование освободившегося времени на дополнительное изу-
чение других вопросов защиты в операционных системах.

Литература

1. Безопасность информационных технологий. Операционные
системы. Базовый профиль защиты. — Центр безопасности инфор-
мации, 2002.

2. Бетелин В.Б., Галатенко В.А., Кобзарь М.Т., Сидак А.А.,
Трифаленков И.А. Профили защиты на основе «Общих критериев».
Аналитический обзор. — www.citforum.urc.ac.ru/security/criteria/

3. Брэгг Р. Безопасность сетей на основе Microsoft Windows
Server 2003. — М.: Русская редакция, 2006. — 672 с.

4. Девянин П.Н. Модели безопасности компьютерных систем.
Управление доступом и информационными потоками. Учебное по-
собие для вузов. — М.: Горячая линия — Телеком, 2011. — 320 с.

5. Кнут Д. Искусство программирования, т. 2. Получисленные
алгоритмы: Учебное пособие. 3-е изд. — М.: Издательский дом
«Вильямс», 2000. — 832 с.

6. Ледовской В. Виртуальным инфраструктурам — прогрессив-
ная защита. — www.anti-malware.ru/analytics/Progressive Defense
for Virtual Infrastructures

7. Майкл Х., Лебланк Д. Защищенный код для Windows Vista. —
М.: Русская редакция, 2008. — 224 с.

8. Моримото Р., Гардиньер К., Ноэл М., Драуби О. Microsoft
Windows Server 2003. Полное руководство. — М.: Вильямс, 2005. —
1312 с.

9. Прилепский А. Антивирусная защита в VMware View. —
www.vsphere5.ru/doku.php?id=deep-security

10. Проскурин В.Г., Крутов С.В., Мацкевич И.В. Программно-
аппаратные средства обеспечения информационной безопасности.
Защита в операционных системах: Учеб. пособие для вузов. М.:
«Радио и связь», 2000, 168 с.

11. Проскурин В.Г. Защита программ и данных: учеб. пособие
для студ. учреждений высш. проф. образования. — 2-е изд. — М.:
Издательский центр «Академия», 2012. — 208 с.

12. Руссинович М., Соломон Д. Внутреннее устройство Micro-
soft Windows: Windows 2003 Server, Windows XP, Windows 2000. —
СПб: Русская редакция, 2005. — 992 с.

190 Литература

13. Силаков Д.В. Использование аппаратной виртуализации
в контексте информационной безопасности. — www.ispras.ru/ru/
proceedings/docs/2011/20/isp 20 2011 25.pdf

14. Фленов М. Linux глазами хакера. — СПб: БХВ-Петербург,
2006. — 544 с.

15. Хорев П.Б. Методы и средства защиты информации в ком-
пьютерных системах: учеб. пособие для студ. высш. учеб. заведе-
ний. — М.: Издательский центр «Академия», 2006. — 256 с.

16. T. Garfinkel, M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. — www.suif.stanford.edu/
papers/vmi-ndss03.pd

17. Аутентификация. Теория и практика обеспечения безопас-
ного доступа к информационным ресурсам. Учебное пособие для
вузов / А.А. Афанасьев, Л.Т. Веденьев, А.А. Воронцов и др.; Под
ред. А.А. Шелупанова, С.Л. Груздева, Ю.С. Нахаева. — М.: Горя-
чая линия — Телеком, 2009. — 522 с.

18. Безопасность Android под шквалом критики. — www.hi-
tech.mail.ru/article/misc/bezopasnost android pod shkvalom kritiki.
html

19. Более половины Android-устройств имеют серьезную брешь
в безопасности. — www.androidstreet.net/2012/09/14/duo-security-
report/

20. Китайские закладки: непридуманная история о виртуали-
зации, безопасности и шпионах. — www.xakep.ru/post/58104/

21. Многоуровневая (сквозная) виртуализация с поддержкой на
уровне ОС. Возможности применения в системах безопасности. —
www.daily.sec.ru/publication.cfm?pid=36491

22. Эволюция угроз безопасности Android за последний год. —
www.habrahabr.ru/post/130612/

23. Android & iOS: концепции распространения приложений и
вопросы безопасности. — www.habrahabr.ru/company/drweb/blog/
143971/

24. Android отметила 5-летие. — www.cybersecurity.ru/os/
163693.html

25. iOS против Android в вопросах безопасности: Find My iPho-
ne vs Cerberus. — www.iphones.ru/iNotes/230903

26. Qubes Architecture Specification. Version 0.3.2010. — www.
qubes-os.org/files/doc/arch-spec-0.3.pdf

Оглавление

Предисловие . 3
1 Понятие защищенной операционной системы 4

1.1. Основные определения . 4
1.2. Основные подходы к построению защищенных опера-

ционных систем . 4
1.3. Административные меры защиты . 6
1.4. Адекватная политика безопасности 6
1.5. Стандарты безопасности операционных систем 10

Вопросы для самопроверки . 15
2 Управление доступом . 14

2.1. Основные определения . 14
2.2. Типовые модели управления доступом 19
2.3. Управление доступом в Windows . 26
2.4. Управление доступом в UNIX . 62

Вопросы для самопроверки . 69
3 Аутентификация . 72

3.1. Общие сведения . 72
3.2. Аутентификация в UNIX . 92
3.3. Аутентификация в Windows . 99

Вопросы для самопроверки . 108
4 Аудит и обнаружение вторжений . 110

4.1. Общие сведения . 110
4.2. Системы обнаружения вторжений . 114
4.3. Аудит в Windows . 120
4.4. Аудит в UNIX . 124

Вопросы для самопроверки . 132
5 Домены Windows . 134

5.1. Общие сведения . 134
5.2. Сквозная аутентификация . 135
5.3. Отношения доверия . 139
5.4. Активный каталог . 141
5.5. Групповая политика . 149

Вопросы для самопроверки . 155

192 Оглавление

6 Безопасность операционных систем мобильных уст-
ройств . 157

Вопросы для самопроверки . 165
7 Виртуализация операционных систем 169

Вопросы для самопроверки . 180
Приложение. Методические рекомендации по орга-
низации изучения дисциплины «Защита в операци-
онных системах» . 182

Анализ требований ФГОС ВПО . 182
Организация изучения дисциплины «Защита в опера-
ционных системах» . 186
Литература . 189

